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Genetic-variant hotspots and hotspot
clusters in the human genome facilitating
adaptation while increasing instability
Xi Long1,2 and Hong Xue1,2,3*

Abstract

Background: Genetic variants, underlining phenotypic diversity, are known to distribute unevenly in the human
genome. A comprehensive understanding of the distributions of different genetic variants is important for insights
into genetic functions and disorders.

Methods: Herein, a sliding-window scan of regional densities of eight kinds of germline genetic variants, including
single-nucleotide-polymorphisms (SNPs) and four size-classes of copy-number-variations (CNVs) in the human
genome has been performed.

Results: The study has identified 44,379 hotspots with high genetic-variant densities, and 1135 hotspot clusters
comprising more than one type of hotspots, accounting for 3.1% and 0.2% of the genome respectively. The
hotspots and clusters are found to co-localize with different functional genomic features, as exemplified by the
associations of hotspots of middle-size CNVs with histone-modification sites, work with balancing and positive
selections to meet the need for diversity in immune proteins, and facilitate the development of sensory-perception
and neuroactive ligand-receptor interaction pathways in the function-sparse late-replicating genomic sequences.
Genetic variants of different lengths co-localize with retrotransposons of different ages on a “long-with-young” and
“short-with-all” basis. Hotspots and clusters are highly associated with tumor suppressor genes and oncogenes (p <
10−10), and enriched with somatic tumor CNVs and the trait- and disease-associated SNPs identified by genome-
wise association studies, exceeding tenfold enrichment in clusters comprising SNPs and extra-long CNVs.

Conclusions: In conclusion, the genetic-variant hotspots and clusters represent two-edged swords that spearhead
both positive and negative genomic changes. Their strong associations with complex traits and diseases also open
up a potential “Common Disease-Hotspot Variant” approach to the missing heritability problem.

Keywords: Frequency independent, Genetic diversity, Missing heritability, Retrotransposon, Recombination-selection
co-saturation, Replication timing

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: hxue@ust.hk
1Division of Life Science and Applied Genomics Centre, Hong Kong
University of Science and Technology, Clear Water Bay, Hong Kong, China
2HKUST Shenzhen Research Institute, 9 Yuexing First Road, Nanshan,
Shenzhen, China
Full list of author information is available at the end of the article

Long and Xue Human Genomics           (2021) 15:19 
https://doi.org/10.1186/s40246-021-00318-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-021-00318-3&domain=pdf
http://orcid.org/0000-0002-8133-9828
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:hxue@ust.hk


Background
Genetic variants (GVs) are essential contributors to
population diversity, providing an important basis for
the investigation of genetic effects on complex traits and
disease susceptibility. A wide spectrum of GVs exist in
the human genome ranging from point alterations, viz.
single-nucleotide polymorphisms (SNPs), to structural
variations including copy-number-variations (CNVs). It
was found that a typical human genome differed from
the reference genome at a median of 4.31 million base
pairs, 84.5% of which consisted of SNPs, the most com-
mon form of genetic variants in human genomes [1]. Al-
though occurring at lower frequencies, structural
variations contribute significantly to genetic diversity
among individuals and populations by causing sequence
alternations ranging from several to millions of base
pairs.
GVs have been analyzed in genome-wide association

studies (GWAS), revealing hundreds of thousands of as-
sociations of GVs with complex diseases and traits [2].
SNPs are often employed as genetic markers in the
“Common Disease-Common Variant” hypothesis-based
GWAS [3–5] with the rationale that common diseases
may be expectedly attributable to common genetic vari-
ants [6–9]. However, so far, only a small fraction of
SNP-disease or SNP-trait associations have been discov-
ered, representing a potential component of the missing
heritability regarding complex disorders and traits [7, 10,
11]. Other contributing factors to missing heritability
would include the poor detection of rare variants
strongly associated with complex diseases or traits, giv-
ing rise to the “Common Disease-Rare Variant” hypoth-
esis [8, 12] which has been confirmed by discoveries of
disease- or trait-associated rare structural variants such
as CNVs [13–15]. Additionally, a “hypothesis-driven” ap-
proach is found to be useful in examples such as the
identification of autism-associated SNPs where shift of
codon usage is postulated to alter protein translation ef-
ficiency [16, 17]. Models also have been developed to de-
lineate the effects of demographic history and genetic
forces on the patterns and maintenance of genetic vari-
ants underlining complex traits [18–20]. Nonetheless, a
substantial portion of the heritability remains unex-
plained, giving rise to the need for a more comprehen-
sive understanding of the distribution, formation
mechanisms and functional effects of different kinds of
genetic variants as a possible gateway to a further reduc-
tion of this unexplained portion.
Previous studies have indicated that genetic variants

are not evenly distributed in the human genome [21,
22], with density enhancements giving rise to genetic-
variant hotspots in some genomic regions, and identified
homologous recombination as one of the major mecha-
nisms for the formation of GV hotspots [23–25]. Since

transposable elements constitute highly abundant repeat
sequences in the genome, they can serve as homologous
templates in recombination events that produce GVs
[26–28]. Rapid accumulation of sequence variations has
been observed in the body of young Alu elements [29],
erasing the sequence similarity between homologous Alu
pairs, and reducing thereby their capability to serve as
templates for homologous recombination. It follows that
the age of transposable elements could be associated
with different types and frequencies of GVs. Genetic var-
iants could also originate from mechanisms such as
background mutations, non-homology repairs, and repli-
cative errors [30–32]. In addition, the choice of DNA
double-strand break repair pathways has been found to
be cell cycle-dependant [33, 34], making replication tim-
ing an important factor in shaping the distribution of
GVs.
Human CNV hotspots have been found to overlap

with CNVs in the chimpanzee and macaque genomes,
pointing to the maintenance of these hotspots by non-
neutral evolutionary forces [24]. Such forces could
underlie the differential distribution of different kinds of
genomic features and genetic variants among the three
types of sequence zones in the human genome, viz. the
Genic (gene-rich), Proximal (gene-proximal), and Distal
(gene-distal) zones [35]. Accordingly, the present study
is directed to establishing a high-resolution comprehen-
sive landscape of genetic-variant hotspots and hotspot
clusters in the three types of sequence zones, so that an
improved understanding may be obtained regarding
their formation mechanisms, and constraint forces, their
adaptive or destabilizing roles in the genome, and their
possible relevance to the problem of missing heritability.

Materials and methods
Data sources
Germline genetic variants employed in genetic variant
hotspots detection include biallelic SNPs (~ 77 million
entries) and small indels (SIDs, ~ 3 million) from the
Phase III 1000 Genomes Project [1] (accessed 18 Febu-
ary 2015), CNVs (~ 1.6 million) from dbVar database
[36] (accessed 18 September 2015), microsatellites
(MSTs, ~ 40,000) from the “Microsatellite track” [37],
and segmental duplication (SDPs, ~ 50,000) from the
“Segmental Dups track” [38] of the UCSC Genome
Browser database [39] (accessed 20 April 2015). Rare
SNPs (minor allele frequency < 1%) located within the
exome pull-down target boundaries are excluded from
analysis on account of the probability of the rare alleles
discovered given disproportionally high coverage of the
exons and their flanking regions in the 1000 Genomes
Project. The data sources of the 55 functional and struc-
tural genomic features analyzed in the present study are
given in the “Data source and track detail” column of
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Supplementary Table S1A. Information of the germline
genetic variants are available in Supplementary Table
S1B. The genomic coordinates of gap regions of human
genome assembly hg19 are retrieved from the “Gap”
track of the UCSC Genome Browser database. Genomic
coordinates of immune system gene loci are retrieved
from NCBI Gene database [40].

Size-classifications of CNVs
The length distribution of germline CNVs are separated
into four size classes using cut points determined as the
critical points of the polynomial regression curve fitted
to two successive peaks on the length distribution curve
as shown in Supplementary Figure S1. The four size
classes comprise the short CNVs (5 < length ≤ 61 base
pairs [bp]), medium CNVs (61 < length ≤ 952 bp), long
CNVs (952 < length ≤ 15,571 bp), and extra-long CNVs
(length > 15,571 bp).

Genomic feature quantitation and tripartite genomic
zones
For a feature where the number of base pairs is counted,
its level in any region is expressed in “Density,” e.g., for
the level of CpG islands in a certain region:

Density ¼ Total number of bp in CpG½ �
Total number of bp in region½ �

On the other hand, for a feature that is assessed by a
numerical score, its level is expressed in “Intensity,” e.g.,
for the level of methylation in any genomic region:

Intensity ¼
P

Number of bp in methylation entry½ � � Score of methylation entry½ �
Total number of bp in region½ �

Various features expressed in “Density” or “Intensity”
are listed in “Density/Intensity” column of Supplemen-
tary Table S1. Genomic features are classified into the
Genic, Proximal, and Distal groups based on their co-
localization patterns in 500-kb successive and non-
overlapping sequence windows in the twenty-two auto-
somes (Supplementary Figure S2); based on their feature
compositions, the 500-kb windows are partitioned into
45.1% Genic, 31.1% Proximal, and 23.8% Distal-zone
windows as described by Ng et al. [35] covering 94.0% of
total non-gap sequences on the 22 autosomes. Accord-
ingly, autosomal regions in the present study refer to
genomic sequences that have been assigned to the
Genic, Proximal, or Distal-zone windows on the 22
autosomes.

Density-based genetic-variant hotspots determined by
weighted sliding windows
To increase the resolution of hotspot detection, a
sliding-window protocol is employed to scan the genome
in 1-kb windows sliding by 10-bp steps. As well, to

render more precise the genomic boundary of any hot-
spot as illustrated in Supplementary Figure S3, the num-
ber of genetic variant entries in each of the one hundred
10-bp steps (or, nstep) in a window is assigned a weight
wstep that depends on its distance from the window
centre, increasing in equal increments from a wstep of
0.5 at the extreme margins of the window to 1.0 at the
very centre of the window. This gives rise to a symmet-
rical distribution of step weights within the window, and
the weighted density of any genetic variant in each win-
dow (Dwin) is given by:

Dwin ¼
X100

step¼1

wstep � nstep=
X100

step¼1

wstep

The weighted density of the targeted kind of genetic
variants is calculated in all 1-kb windows. In the Genic,
Proximal, or Distal zones, the top-density windows that
cover altogether 5% of the total entries of the targeted
genetic variant are identified as hotspots. For example,
the hotspot detection procedure for SNPs in the Genic
zones (see flowchart in Supplementary Figure S4) con-
sists of (i) each autosome of the human genome is di-
vided into successive 1-kb sliding-windows in 10-bp
steps; (ii) Dwin for SNP entries is determined for all the
sliding windows; (iii) those sliding windows that overlap
with a 500-kb Genic zone are separated into Part I slid-
ing windows that are entirely located within a Genic
zone, and Part II sliding windows that are partially lo-
cated within a Genic zone; (iv) Part I and Part II win-
dows are ranked separately based on their Dwin values
from the highest to the lowest. The Part I sliding win-
dows with top-ranked Dwin values are recruited succes-
sively from rank 1 down to rank i until their cumulative
SNP fraction represents ≤ 5% of total SNP entries in the
Genic zones to yield the top SNP windows in Part I
(with ranks of 1, 2, 3, … i, red-numbered in the flow-
chart). The top-ranked Part II sliding windows are re-
cruited from rank 1 down to rank k (with ranks of 1, 2,
3, … k, red-numbered in flowchart) such that the rank-k
window displays a weighted SNP density (Dk) greater
than or equal to the Dmin (viz. lowest Dwin) among the
top-ranked SNP windows in Part I. Steps iii and iv are
also repeated for the Proximal and Distal zones as de-
scribed for the Genic zones. (v) Thereupon, Part I and
Part II top-ranked windows from the three types of
zones are merged together, followed by elimination of
any double-counting of windows on account of their
zone-crossing to yield altogether a total of 34,487 SNP
hotspots in the three types of zones with a mean width
of 1994 ± 4528 bp, covering 2.54% of the autosomal re-
gions analyzed. The zone-specific hotspot detection
thresholds (Dmin), and the chromosomal coordinates of
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different kinds of genetic variant hotspots, are given in
Supplementary Table S2 and Supplementary Dataset S1.

Identification of hotspot clusters
When two or more of different kinds of genetic-variant
hotspots overlap with one another, the genomic regions
occupied by these hotspots are merged into a hotspot
cluster. This procedure identifies 1135 clusters in the
genome consisting of 2 to 3 kinds of hotspots each,
amounting to 0.20% of autosomal sequences and com-
prising twenty-three kinds of hotspot-compositions, the
chromosomal coordinates of which are given in Supple-
mentary Dataset S1.

Determination of natural selection hotspots
To identify positive selection hotspots (PosSel-Hs), the
strength of positive selection is evaluated in 1-kb win-
dows in the non-gap regions on 22 autosomes based on
(i) average derived-allele frequency (DAF) of all SNPs in
each window, (ii) average of the maximum DAF differ-
ences (|ΔDAF|) across the two different populations,
and (iii) the average of haplotype structure-based statis-
tic |nSL| [41]. Next, the top-5% windows ranked accord-
ing to each of these three kinds of positive-selection
levels are earmarked as candidate windows under posi-
tive selection. All 1-kb windows in the autosomes are
classified into ten ranking groups based on their number
of informative sites (viz. the SNPs with DAF or nSL sta-
tistics). For each candidate window, its level of positive
selection is compared with the estimated levels in 10,000
random windows simulated from the corresponding
ranking group. The matching of informative site density
would accommodate the higher variance in site-based
measurement in the windows with low numbers of in-
formative sites. Only windows with significantly higher
measurement of positive selection (p < 0.05) relative to
the random simulations are kept, and successive win-
dows are merged to yield the positive selection hotspots.
In this regard, 99,266 DAF hotspots, 89,464 |ΔDAF| hot-
spots, and 63,060 |nSL| hotspots are identified, which
altogether cover 10.33% of autosomal regions. Likewise,
the negative selection hotspots (NegSel-Hs) are identi-
fied based on two different measures of purifying selec-
tion, viz. (i) sequence conservation score measured using
phyloP across 100 species, and (ii) intensity of nucleotide
diversity. The windows with top-5% phyloP score or
bottom-5% nucleotide diversity are earmarked, and only
the windows displaying significantly higher measure-
ments of purifying selection (p < 0.05) relative to 10,000
simulation windows of similar levels of informative sites
are regarded as NegSel-Hs, which altogether amount to
7.94% of autosomal sequences. The phyloP score is re-
trieved from the “Conservation” track of UCSC Table
Browser [42]. The nucleotide diversity in any window is

estimated using VCFtools version 0.1.15 with the “--win-
dow-pi” flag [43]. The |nSL| value for each SNP is the
absolute value of the nSL statistic estimated and normal-
ized across 100 frequency bins in selscan version 1.2.0
with all the default settings [41, 44]. The DAF, |ΔDAF|,
|nSL|, and nucleotide diversity used for selection-hotspot
determination are based on SNPs and haplotypes from
the Phase III 1000 Genomes Project of 2504 individuals.
Genomic windows subject to balancing selection re-
trieved from the supplementary material of Bitarello
et al. [45] are merged across African and European pop-
ulations at different target frequency values, yielding 10,
275 balancing selection hotspots (BalSel-Hs) amounting
to 1.71% bp of the autosomal regions. Summaries of se-
lection hotspots are available in Supplementary Table
S3A. The chromosomal coordinates and p values of each
of the PosSel-Hs and the NegSel-Hs identified are given
in Supplementary Dataset S1.

Replication-time segments
Previously, human DNA replication timing has been ex-
perimentally assessed in 1-kb sequence windows across
the genomes of fifteen different human cell lines by EN-
CODE project [46, 47], which reveals sequence windows
displaying, to different extents, conservation in replica-
tion timing across different cell lines. Therefore, it is
possible to generate a consent replication-timing profile
for the human genome with reference to the fifteen cell
lines retrieved from the “UW Repli-seq track” of UCSC
Table Browser (viz. GM12878, K562, HeLa-S3, HepG2,
HUVEC, IMR90, MCF-7, SK-N-SH, BG02ES, BJ,
GM06990, GM12801, GM12812, GM12813, and
NHEK). Based on the DNA replication times of 1-kb se-
quence windows in fifteen cell lines, the human genome
is classified into six types of replication-time segments
in the present study as follows: (i) for each cell line, rec-
ord the replication phase(s) that earns the highest score
among the six replication phases (G1b, S1, S2, S3, S4,
and G2 phases) within every 1-kb window; (ii) for any
window, the replication phase that earns the highest
score most frequently from the 15 cell lines is chosen as
the representative replication phase for all the 15 cell
lines. Only windows whose replication time has been
assessed in more than eight out of the fifteen cell lines
are subject to analysis, yielding 325,635 G1b, 389,304 S1,
395,223 S2, 454,554 S3, 392,600 S4, and 512,129 G2 1-
kb windows that fall into the Genic, Proximal, or Distal
zonal windows covering altogether 85.7% of the twenty-
two autosomes. Windows yielding more than one repre-
sentative replication phases are not included in the ana-
lysis. Successive windows that share the same
representative replication phase are merged to yield seg-
ments of varied lengths, and the chromosomal
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coordinates of the six types of replication-time segments
are given in Supplementary Dataset S1.

Somatic CNV breakpoints in cluster-containing genes
Coordinates of 23,056 known genes are matched with the
locations of hotspot clusters to yield 448 genes that over-
lap with one or more clusters, and 442 of them display
one or more CNVT breakpoint(s). For each of these 442
genes, the cluster-segments and noncluster-segments are
compared with respect to their CNVT breakpoint dens-
ities, identifying 33 genes where the cluster-segments are
significantly enriched in CNVT breakpoints (chi-square
test, Bonferroni-corrected), and only one gene where the
cluster-segment is significantly depleted in CNVT break-
points as shown in Supplementary Table S4. In the chi-
square tests, the expected number of CNVTs in the
cluster-segment of the gene is calculated by multiplying
the number of total CNVTs in the gene and the fraction
of base pairs covered by the cluster-segments in the gene.
Gene coordinates were retrieved from the R package
“TxDb.Hsapiens.UCSC.hg19.knownGene” version 3.2.2
using “genes” function in “GenomicFeatures” package ver-
sion 1.26.4 [48].

Statistical analysis
Empirical p values based on Monte Carlo simulations
In each round of simulation, the locations of target re-
gions are randomly shuffled (by matching the number
and sizes of the target regions) within the autosomal re-
gions analyzed. The measurement of interest is assessed
for each simulation round. The p value is obtained as (r
+ 1)/(n + 1) [49], where n is the round of simulations
and r is the number of simulations that produce a meas-
urement greater than or equal to the actual level in the
case of significant enrichment, or less than or equal to
the actual level in the case of significant depletion. Un-
less otherwise specified, 5,000,000 rounds of simulations
are performed.

Enrichment of GWAS-identified SNPs in hotspots and
clusters
To estimate using the Monte Carlo method the level of
significance regarding the enrichment of GWAS-
identified SNPs in the genetic-variant hotspots and hot-
spot clusters, random regions are simulated in sequence
windows with matching levels of average minor-allele
frequencies (MAF) in order to accommodate the de-
pendency of GWAS on allele frequency. For this pur-
pose, autosomal sequence windows are classified into
ten equal groups according to their individual average
MAF values, and the hotspots or clusters are also classi-
fied into the same ten groups. The Monte Carlo simula-
tions are conducted by simulating sequence windows
from the corresponding MAF group of hotspot or

cluster. The simulation results for each group of hotspots
and clusters are shown in Supplementary Figure S5.

Comparison of population differentiation between hotspot
clusters and non-hotspot regions
To compare the positive-selection strength estimated by
population differentiation among the cluster and non-
hotspot (viz. the genomic regions outside of hotspots
and clusters) regions, the DAF difference between any
two populations, viz. |ΔDAF|POP1-POP2, is estimated for
all the clusters and non-hotspot regions in each of the
ten population pairs among African, American, South
Asian, European, and East Asian. Let DAFPOP

Region repre-

sents the average DAF of all SNPs in a specific cluster or
non-hotspot region in a population. The |ΔDAF| be-
tween any two populations, for example African and
European, viz. |ΔDAF|African-European, pertaining to the ith

cluster and jth non-hotspot region is given by

jΔDAF jAfrican − European
Clusteri

= j DAFAfrican
Clusteri −DAFEuropean

Clusteri
j and

jΔDAF jAfrican − European
nonhotspot j

= j DAFAfrican
nonhotspot j

−DAFEuropean
nonhotspot j

j : Thereupon, in the case of n total clusters and m total

non-hotspot regions, the n jΔDAF jAfrican − European
Cluster values

are compared with the m jΔDAF jAfrican − European
nonhotspot values

by unpaired one-tailed t tests. The procedure is likewise
repeated for the other nine population pairs.

Software employed in data processing and visualization
Custom R scripts are employed in hotspot and cluster
detections and analyses under R environment version
3.3. Disease- or trait-associated SNPs identified by
GWAS at p < 10−8 are lifted over from GRCh38.p5 to
hg19 using the “liftOver” function in R package “rtrack-
layer” version 1.34.2 [50]. Processing and quantification
of genetic variants and genomic features are conducted
using R package “GenomicRanges” version 1.26.4 [48].
Figures are drawn using Cytoscape version 3.6.1 [51, 52],
as well as the R packages “ggplot2” version 3.0.0 [53],
and “quantsmooth” version 1.40.0.

Results
Density-based genetic variant hotspots and clusters
The germline genetic variants retrieved from different
public databases are analyzed including SNPs, SIDs,
MSTs, CNVs, as well as SDPs which originated from
fixed CNVs [54] (see “Data source” in “Materials and
methods” section). The three cuts on the length distribu-
tion of germline CNVs in Fig. 1a separate the CNVs into
four size classes comprising the short CNVs (SCNVs),
medium CNVs (MCNVs), long CNVs (LCNVs), and
extra-long CNVs (ECNVs). Notably, the presence of all
four different size-classes of CNVs is evident in all three
types of genomic zones (Fig. 1a, panels 2–4).
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The three types of genomic zones display distinct
biases in terms of their constituent GVs. As shown in
Fig. 1b, the longer GVs, including the breakpoints of
LCNVs, ECNVs, and SDPs are prominently enriched in
the Distal zones largely at the expense of the Proximal
zones. In contrast, the shorter GVs including SIDs,
SCNVs, and MCNVs are somewhat enriched in the
Genic zones. MSTs are enriched slightly in the Proximal
zones, whereas SNPs are evenly distributed over the
three zones. Because the average frequencies of genetic
variants vary between the Genic, Proximal, and Distal
zones (Fig. 1b), the identification of genetic-variant hot-
spots is performed separately for the three types of
zones. To enhance resolution and obtain more precise
boundary of genetic-variant hotspots, a weighted sliding-
window algorithm with windows of 1000 bp in steps of
10 bp is employed. For each type of genomic zones, the
weighted density of any targeted genetic variant is

measured in the sliding windows, and all the windows
are ranked based on their densities from high to low.
The top-density windows that cover altogether up to 5%
of the total entries of the targeted genetic variant are
identified as hotspots of that kind of genetic variant (see
“Density-based genetic-variant hotspots determined by
weighted sliding windows” in “Materials and methods”
section). Altogether 44,379 hotspots with an average size
of 1882 bp are identified in the three genomic zones,
equivalent to 3.09% of the total base pairs in the twenty-
two autosomes (Fig. 2a and Supplementary Table S2).
The enrichments of different kinds of GVs in their re-
spective hotspots relative to simulated genomic regions
are significant with p values ranging from 4 × 10−4 to 0
(Supplementary Figure S6). In general, the constitutive
GVs in the hotspots display higher allele frequencies
than genomic average except in the case of the SID hot-
spots (Supplementary Figure S7). On the basis that the

Fig. 1 Genetic variants and replication phases in different genomic zones. a Length distributions of CNVs. Upper panel: distribution of germline
CNVs in total and in the Genic, Proximal, and Distal genomic zones. Germline CNVs are separated into short (S), medium (M), long (L), and extra-
long (E) CNVs based on the three cuts indicated by the red arrows (see “Size-classifications of CNVs” in “Methods” section). Lower panel:
distribution of total somatic CNVs in tumors from COSMIC database. b Percentile distributions of eight kinds of genetic variants in the Genic
(blue), Proximal (green), and Distal (red) zones. The last “Zone” column expresses the percentages of base pairs in the Genic, Proximal and Distal
zones amounting to 45.1%, 31.1%, and 23.8% respectively of the total base pairs of the human genome. c Percentages of Genic-, Proximal-, and
Distal-zone sequences in six different phases of DNA replication ranging from the earliest-replicating G1b to the latest-replicating G2 phases.
Colored dashed lines indicate the 45.1% Genic-, 31.1% Proximal-, and 23.8% Distal-zone sequences of the human genome. G, Genic; P, Proximal;
D, Distal
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Fig. 2 Landscape of genetic-variant hotspots and hotspot clusters. a Tracks on chromosome 1-22 show from top to bottom, in successive and
non-overlapping 500-kb windows: (i) coverage of genetic-variant hotspots in window (green bar) capped at 50% by the dark red rectangles in
chromosomes 8, 12, and 16; (ii) Genic zones are colored in blue, Proximal in green, and Distal in red; (iii) ideogram; (iv) sequence windows
displaying top coverage (top 10%) of positive selection hotspots (red), purifying selection hotspots (green), and both positive and purifying
selections (purple); (v) sequence windows displaying top 10% coverage of balancing selection hotspots (pink); (vi) number of hotspots clusters
(height of downward blue bars). Beige windows indicate where neither positive nor purifying selection hotspots reach top 10% level in track (iv),
or where balancing selection hotspots do not reach top 10% level in track (v). b Tracks (i)–(vi) enlarged for red boxes I and II in (a) for the
locations of MHC on chromosome 6, and a cluster of transcription factors on chromosome 16 [55], respectively. c Enrichment and selection-status
of eight kinds of genetic-variant hotspots (x-axis) in immune system gene loci (y-axis). Fold of hotspot density inside each immunoprotein gene
locus relative to autosomal average is represented by the area of the corresponding pie chart: hashed slices indicating proportion of GV hotspots
overlapping, and gray slices indicating non-overlapping, with selection hotspots. Colored bars beside each pie chart show the relative abundance
of different kinds of selection hotspots acting on these GV hotspots: “B” stands for GV hotspots overlapping with balancing selection hotspots, “P”
with positive selection hotspots, “N” with negative selection hotspots. See Supplementary Table S9 for numerical data. MHC, major
histocompatibility complex; IGH, IGK, and IGL, immunoglobulin heavy, kappa and lambda loci respectively; TRA, TRB, TRD, and TRG are the T cell
receptor alpha, beta, delta and gamma loci. Since TRD is embedded in TRA, they are merged into a TRA/D locus. “H” stands for “hotspots”
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convergence of two or more kinds of hotspots produces a
hotspot cluster (see “Identification of hotspot clusters” in
“Materials and methods” section), there are 1135 clusters
with an average size of 4816 bp, equivalent to 0.20% of the
total base pairs (Fig. 2a and Supplementary Table S2).

Formation mechanisms for hotspots and clusters
Contribution of recombination and retrotransposons
The association of genetic variants with homologous re-
combination is confirmed by the positive correlation be-
tween SNP density and recombination intensity (Fig. 3a),
as well as the enhancement of recombination intensity
in all GV-containing windows except for the SDP-
containing ones (Fig. 3b). It has been proposed that ret-
rotransposons invaded the human genome in successive
waves at different times [56], and the ages of some retro-
transposon subfamilies have been estimated by previous
studies (Supplementary Table S5). Since the SVA, and
likewise the Alu, subfamilies of similar ages show similar
distribution curves in regions flanking various genetic
variants (Fig. 4a and Supplementary Figure S8), the SVA
subfamilies are grouped together according to age to
yield the SVAef (viz. SVA_E and SVA_F), SVAcd (SVA_
C and SVA_D), and SVAab (SVA_A and SVA_B)

subgroups; and the AluY subfamilies are grouped to-
gether to yield the “very young” AluYvy (AluYa5,
AluYb8, AluYb9, AluYg6, AluYf4, AluYd8, AluYa8,
AluYk11, AluYh9, and AluYk12), and the “young” AluYy
(AluY, AluYc, AluYc3, AluYk4, and AluYf5) subgroups.
LINE1 elements are likewise combined into the “very
young” L1vy, “young” L1y, “middle aged” L1m, and “old”
L1o subgroups (Supplementary Table S5). The oldest
SVAab, AluJ, and L1o subgroups all show greater en-
richment of SCNVs but not MCNVs, LCNVs, or ECNVs
in their vicinities, which is not the case with the youn-
gest SVAef, AluYvy, and L1vy subgroups (Fig. 4b), sug-
gesting that the age of these retrotransposons
constitutes a significant determinant of some of the
retrotransposon-GV associations. Such age effects con-
form to the “long-with-young” (p = 0.018 between youn-
ger and older retrotransposons) but “short-with-all” (p =
0.263) modes of association between GV length and
retrotransposon age (Fig. 4c). A plausible explanation is
that, because the younger retrotransposons (shown in
red and orange in Fig. 4b) are less numerous than the
older ones (shown in blue), they are more sparsely dis-
tributed in the genome. As a result, recombinations be-
tween pairs of the more sparsely distributed young

Fig. 3 Relationships between genetic variants and genome instability. a Average recombination intensity in 10 equal groups of 1-kb sequence
windows ranked according to SNP density from low (left) to high (right). R2 is the coefficient of determination. b Higher recombination intensity
in 1-kb windows with GVs compared to windows without GVs (unpaired one-tailed t tests, Bonferroni corrected). c Enrichment of eight kinds of
genetic-variant hotspots, recombination hotspots (Rec-Hs) and somatic CNVTs in the six DNA replication phases, expressed as density fold-
changes relative to autosomal average. d Densities of GWAS-identified SNPs (corrected for allele-frequency dependency, see “Statistical analysis”
in “Methods” section), breakpoints of variants in ClinVar database, and somatic CNVT breakpoints in total hotspots and total clusters relative to
randomly simulated genomic regions represented by the gray violin-plots. All p values smaller than 0.05 are shown in red. e Recurrency of
somatic CNVT breakpoints in eight kinds of hotspots, in “Hotspot” representing all 44,379 genetic-variant hotspots in the genome, or in “Cluster”
representing all 1135 hotspot clusters in the genome, with their p values estimated by the Monte Carlo method. f Percentage of hotspot- or
cluster-containing genes found in Tumor Suppressor Gene Database (TSG) and Network of Cancer Genes (NCG). The p values estimated using
chi-square tests are shown above each bar (Bonferroni corrected). In (b, d e, f), arrow on y-axis indicates the autosomal average. Error bars in (b),
and shaded bands around the curve in (a) indicate 95% confidence intervals. “H” stands for “hotspots”

Long and Xue Human Genomics           (2021) 15:19 Page 8 of 23



Fig. 4 Relationships between genetic variants and retrotransposons. a Density distributions of different retrotransposon groups within (viz. at
distance = 0 bp) or near SNPs, SIDs, and breakpoints of SCNVs, MCNVs, and LCNVs. Arrows on y-axes indicate autosomal averages of the
retrotransposon group. b Distributions of genetic variants, recombination hotspots (Rec-H), recombination intensity (Rec), positive selection
(PosSel) indicated by average |nSL| values, negative selection (NegSel) indicated by phyloP scores, as well as GWAS-identified SNPs both inside (at
distance = 0 bp) and within ± 250 bp of different groups of SVAs, short interspersed nuclear elements (SINE), and long interspersed nuclear
elements (LINE). Designations and numbers of the retrotransposon groups indicated at the top of the columns are color-coded based on their
relative ages, ranging from red for the youngest to dark blue for the oldest. Colored asterisks mark significant enrichments (red) or depletions
(blue) of features based on Monte Carlo simulations (n = 1000; *p < 0.005), and the dashed horizontal lines indicate the respective autosomal
averages of each y-axis feature. c Density of long (MCNV, LCNV, ECNV, SDP) in the left panel, or short (SID, MST, SCNV) structural variations in the
right panel, in vicinities of the younger (SVAs, AluYs, L1vy, L1y) or older (AluS, AluJ, FLAM, MIR, L1m, L1o, L2) retrotransposon groups. SV stands for
structural variation; RE for retrotransposon; p value < 0.05 is shown in red (unpaired one-tailed t-tests). d Enrichment of y-axis genetic variants
within ± 50 bp of x-axis genetic variants expressed by the thermal scale representing the natural-log of the density fold-change relative to the
autosomal average
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retrotransposons would generate larger structural
variations.
As a consequence of the length-age association between

genetic variants and retrotransposons, the short variants
(SID, MST, SCNV) form a closely co-localized group in
Fig. 4d, and the longer variants (MCNV, LCNV, ECNV,
and SDP) form a different closely co-localized group.
However, although the short and long genetic variants are
both associated with the young SVAef, AluYvy, and L1vy
in Fig. 4b, the white and light-yellow squares in Fig. 4d in-
dicate that they do not show significant co-localization
with one another, which suggests that other mechanisms
besides retrotransposon-mediated recombination could
also produce genetic variants, and natural selection may
also influence the distribution of the genetic variants sub-
sequent to their production.

Effects of natural selection on distribution of genetic
variants
In general, the level of positive selection can be assessed
based on (i) the allele-frequency spectrum, (ii)

population differentiation, and (iii) haplotype structure
[57]. First, using the shift of DAF to extreme values as
an index of positive selection [58, 59], an elevated per-
centage of SNPs with DAF > 0.95, points to the enhance-
ment of positive selection in GV hotspots and even
more so in hotspot clusters relative to non-hotspot re-
gions (Fig. 5a) throughout the African, American, South
Asian, European, and East Asian populations (p < 10−10

for clusters in all five populations). Secondly, using
population differentiation as an index, the increased
values of DAF-difference between population pairs, viz.
|ΔDAF| in clusters relative to non-hotspot regions,
yielded p values ranging from 10−2 down to less than
10−13 for eight out of ten population pairs (Fig. 5b),
attesting to substantial inter-population differentiation
driven by directional selection within hotspot clusters
during the evolution of human populations. Thirdly,
using haplotype structure-based |nSL| statistic as an
index for both soft and hard positive-selection sweeps
[41], the significantly enhanced |nSL| scores in hotspots
and even more so in clusters relative to non-hotspot

Fig. 5 Relationships of genetic-variant density with recombination, natural selection and replication timing. a Strength of positive selection
indicated by percentage of SNPs displaying DAF > 0.95 in the African (AFR), American (AMR), South Asian (SAS), European (EUR), and East Asian
(EAS) populations within non-hotspot regions, total hotspots, total clusters, and Rec-Hs. b Enhancement of positive selection in clusters over non-
hotspot regions in terms of |ΔDAF| between ethnic population pairs expressed by negative log10-transformed p values from unpaired one-tailed t
tests (see “Statistical analysis” in “Methods” section). c Enhanced positive selection in clusters and hotspots relative to the non-hotspot regions
indicated by elevated |nSL| values in five populations. d Excess of nucleotide diversity (left panel) or reduction of phyloP score (right panel) in
hotspots and clusters. In (a, c, d), bars share the same color-codes, and p values (from unpaired one-tailed t tests) above the bars are shown in
red or in blue indicating significantly higher or lower selection in hotspots/clusters relative to the non-hotspot regions. Since no population-
specific phyloP data is available, right panel in (d) compares the non-hotspot, hotspot, and cluster regions of the human reference genome hg19.
e Variations of recombination intensity, positive selection (in terms of average |nSL|), and purifying selection (in terms of phyloP score) in 1-kb
window groups with low (3.1% of total, blue region), medium (92.8%, green region) and high (4.1%, pink region) SNP densities. f Variation of
recombination intensity (orange curve) and positive selection in terms of DAF (red curve) among ten groups of SNP hotspots ranked by SNP
density from low (rank 10) to high (rank 1). g Distribution of the low-, medium-, and high-density windows from part (e) in the different DNA
replication phases. Error bars in (a, c, d) and shaded bands around the curves in (f) indicate 95% confidence intervals
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regions (Fig. 5c, p < 10−24 for clusters in all five popula-
tions) are likewise indicative of the presence of positive
selection. A total of 26.4% of GV hotspots and 36.0% of
the clusters overlap with sequence windows displaying
top-5% levels in one or more of the three different mea-
sures of positive selection based on DAF, |ΔDAF|, and
|nSL| (Supplementary Table S3B), significantly more
than the simulated regions (p = 0.0001 for both hotspots
and clusters, 10,000 simulations). These three different
measures of positive selection jointly enable the identifi-
cation of 200,211 hotspots of positive selection based on
the criterion that hotspot sequence windows display top-
5% levels in at least one of the three measures (see “De-
termination of natural selection hotspots” in “Materials
and methods” section).
Purifying selection can be assessed based on (i) reduc-

tion of genetic diversity, and (ii) cross-species sequence
conservation [60]. Significant elevation of genetic diver-
sity, measured by nucleotide diversity [61], is evident in
both hotspots and clusters in all five ethnic populations
(Fig. 5d left panel) with p < 10−44 in all populations for
the clusters. Cross-species conservation, measured by se-
quence conservation score measured using phyloP
across 100 species [42], is significantly reduced in both
hotspots and clusters relative to non-hotspot regions
(Fig. 5d right panel) with p < 10−230 for hotspots and
10−35 for clusters. Altogether 8.83% of GV hotspots, and
11.1% of the clusters, overlap with sequence windows
that display either top-5% levels of phyloP score or bot-
tom 5% of nucleotide diversity, which is significantly less
frequent in comparison to simulated regions (p = 0 for
both hotspots and clusters, 10,000 simulations). A total
of 165,323 purifying or negative selection hotspots are
identified as sequence windows that display at once top-
5% levels of phyloP score and bottom-5% levels of nu-
cleotide diversity.
It has been proposed that balancing selection repre-

sents as an essential adaptive force acting on structural
variation hotspots harboring genes involved in immune
functions or anthropologically crucial functions [24, 25,
35]. This is confirmed by the present findings that 4.7%
of the GV hotspots and 6.0% of the hotspot clusters
overlap with the hotspots of balancing selection in the
human genome (Supplementary Table S3B). The im-
portance of balancing selection in shaping the distribu-
tions of hotspots and clusters is supported further by the
significantly higher overlap of balancing selection hot-
spots with GV hotspots and the clusters relative to simu-
lated non-hotspot regions (p = 0.0001 for both GV
hotspots and clusters, 10,000 simulations). The findings
that all three different measures of positive selection
support the association of genetic-variant hotspots and
clusters with positive selection (Fig. 5a–c), and both of
the measures of purifying selection reveal a reduction of

purifying selection in hotspots and clusters relative to
the non-hotspot regions (Fig. 5d), therefore indicate that
positive selection and balancing selection are the domin-
ant selection forces acting on genetic-variant hotspots
and clusters.

Co-saturation of recombination and selection in genetic
variant-enriched regions
The levels of recombination and natural selection are ex-
amined at different levels of GV densities in Fig. 5e. In
96.5% of the 1-kb sequence windows in the genome
(light green region, Fig. 5e), largely parallel variations of
recombination intensity (orange curve) and positive se-
lection (red curve) with SNP density are observed, both
running expectedly opposite to the variation of negative
selection (blue curve). In the windows with top 2.0%
SNP densities (pink region), both the recombination and
positive selection curves flatten as they approach satur-
ation. This points to the possible underestimation of re-
combination rate in the presence of strong positive
selection and vice versa. Mechanistically, excessive se-
quence shuffling by recombination events would limit
the effectiveness of positive selection in terms of the at-
tainable DAF, leading to the low percentage of SNPs
with high DAF as well as low |nSL| in over 30,000 previ-
ously determined recombination hotspots (Rec-Hs) in
the human genome [62, 63] of all the ethnic groups (or-
ange bars, Fig. 5a, c). On the other hand, strong positive
selection could eliminate some of the unfit recombinant
genotypes, thereby diminishing the footprints of the re-
combinations and causing an underestimation of their
effects. On this basis, the densities of genetic variants,
being independent of allele or haplotype frequencies,
could represent a more robust measure of genetic diver-
sity than frequency-dependent measures where selection
and recombination are highly active. Interestingly, in the
SNP hotspots that are 1st or 2nd-ranked in terms of SNP
density (Fig. 5f), recombination decreases yet the level of
positive selection remains elevated, suggesting that al-
though recombination tends to be underestimated owing
to the presence of positive selection, the positive selec-
tion is too strong to be suppressed by recombination.
Among different GV hotspots, those of SNP, ECNV, and
LCNV show the largest percentage of overlap with posi-
tive selection hotspots (Supplementary Table S3B),
pointing to the presence of exceptional positive selection
within these three kinds of hotspots.
In the windows with the lowest-1.5% SNP densities

(light blue region, Fig. 5e), low SNP is accompanied by
high recombination intensity and positive selection. This
finds a possible explanation in the top pie chart of Fig. 5g,
which shows that over 50% of these lowest-1.5% SNP-
density windows are in fact replicated in the G1b-S2
phases where the fidelity of DNA replication is high [64–
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66], suppressing thereby the occurrence of SNPs (see
“Replication-time segments” in “Materials and methods”
section for the classifications of sequence windows into
six replication phases).

Impacts of hotspots and clusters on function and disease
Idiosyncratic association with functional genomic features
It has been observed previously that Alu insertions of
different ages enhance SNP occurrences in their neigh-
borhoods differentially [29], suggesting that genomic
feature-genetic variant associations vary with the nature
of the genetic variant or the genomic feature or both.
Accordingly, the co-localizations of eight kinds of GV

hotspots with a wide spectrum of genomic features are
analyzed in Fig. 6. Some of the co-localizations turn out
to be highly idiosyncratic, exemplified by the strong as-
sociations of the DNA methylation features with the
SNP hotspots; or the large intergenic non-coding RNAs
(LINC) with ECNV and SDP hotspots; and histone
modification features with MCNV hotspots.
The dissimilar properties of the four size-classes of

CNVs are confirmed by the strong associations of
histone-modification features such as H3k9me3 with the
hotspots of MCNV and SCNV but not those of LCNV
and ECNV; the much stronger associations of H2az,
H3k79me2, and open chromatin elements (DNase) with

Fig. 6 Genomic features inside and near genetic-variant, selection and recombination hotspots. The density or intensity of 55 types of genomic
features occurring between 4-kb upstream (left end) to 4-kb downstream (right end) from the centre (indicated by orange arrowhead at the top
of each column) of different kinds of hotspots, expressed in fold-changes relative to the respective autosomal average in accordance to the red-
blue thermal scale. The number and average size of different kinds of hotspots are shown in the bottom two rows of the figure. The genomic
features indicated on the y-axis are grouped into Proximal-zone (green), Genic-zone (blue), and Distal-zone (red) features based on their co-
localization relationships (Supplementary Figure S2) [35], along with Marker (M) features (black). The descriptions and abbreviations of different
genomic features are given in Supplementary Table S1A
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hotspots of MCNV relative to those of SCNV; and the
strong association of LINC with the hotspots of ECNV
relative to those of MCNV, or even more so those of
LCNV or SCNV (Fig. 6 and Supplementary Table S1A).
The PosSel-Hs co-localize mildly with the SVAab retro-
transposons. The NegSel-Hs co-localize positively with a
range of regulatory features, methylation sites, and
disease-related sites, while their negative co-localizations
with the Alu, SVAab, SVAcd, and L1 retrotransposons
support the suggested paucity of purifying selection in
transposable elements [67, 68]. The prominent associ-
ation between histone modifications and MCNV hot-
spots is further scrutinized in terms of the size of the
constituent CNVs of the MCNV hotspots, which reveals
striking enrichment of CNVs of 150–200 bp (density
peaks in dashed boxed in Fig. 7 and Supplementary

Figure S9) in MCNV hotspots with high levels, but not
in those with low levels, for all twelve types of histone
modifications analyzed.
The 1135 hotspot clusters in the human genome com-

prised twenty-three different combinations of hotspots, a
large majority of which include the hotspots of SNP and
hotspots of structural variants. Each kind of hotspot
clusters is associated with its own characteristic array of
genomic features. The associations of for example the
long RNA (LRNA-) with the SNP + MCNV cluster (viz.
clusters comprising the SNP and MCNV hotspot) are
largely additive, not far from the sum of the individual
associations of LRNA- with SNP hotspot and MCNV
hotspot; in contrast, the associations of H3k27ac toward
the SNP + SCNV cluster are synergistic, far exceeding
the sum of the individual associations of H3k27ac with

Fig. 7 Length distribution of MCNVs in the MCNV hotspots with high or low levels of histone modifications. Based on the intensity of each type
of histone modification, the MCNV hotspots are divided into two groups that show above-average (orange) or below-average (blue) intensities
respectively. The contrast between the MCNV hotspots with high levels of histone modification (orange shaded peaks) and those with low levels
(blue shaded peaks) is particularly evident in the dashed boxes at 146–226 bp, which corresponds to the length of DNA sequence wrapping
around one nucleosome (146 bp) [69] plus the linker DNA (up to 80 bp) [70]. “Av.” stands for average CNV length in bp as indicated by the
dashed vertical orange or blue line
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SNP hotspot and SCNV hotspot (Supplementary Figure
S10).

Distributions at immune system gene loci
Although genes are not specially co-localized with GV hot-
spots or clusters (Fig. 6 and Supplementary Figure S10), the
effects of genetic variants and natural selection are often
discernable within particular gene clusters (Fig. 2b), as illus-
trated by the immune system gene loci including MHC
where protein sequence diversity represents a necessity
[21]. Thus the immunoglobulin IGH, IGL, and IGK loci,
and the MHC locus all overlap with clusters that are
enriched with various kinds of hotspots, such as a 40-fold
enrichment of ECNV hotspots in the MHC locus relative to
genomic average (Fig. 2c). The GV hotspots also exhibit
abundant co-occurrence of positive in terms of PosSel-H
and balancing selection in terms of BalSel-H contents (or-
ange bars, Fig. 2c), but little purifying selection in terms of
NegSel-H content (blue bars). These results suggest that
the high sequence diversity of the IG- and MHC-loci has
been achieved mainly through positive and balancing selec-
tion within the hotspots and clusters. The weaker presence
of GV hotspots as indicated by reduced pie size, or selective
processes as indicated by hashed slices, in Fig. 2c among
the TRA, TRB, TRD, and TRG loci of T cell receptors are
consistent with the reduced need by these receptors for se-
quence diversity compared to the IG- andMHC-loci.

Functional evolution in late-replicating DNA
A well-defined temporal order of DNA replication is
characteristic of normal cell division. The periods of
genomic DNA synthesis have been classified, from early
to late, into the G1b, S1, S2, S3, S4, and G2 phases in fif-
teen cell types [46, 47], thus allowing the partition of 1-
kb autosomal windows into these six phases (see “Repli-
cation-time segments” in “Materials and methods” sec-
tion). Genic zones are enriched in the early-replicating
G1b, S1, and S2 phases; Distal zones in the late-
replicating S4 and G2 phases; and Proximal zones in the
intermediate S3 and late-replicating S4 phases (Fig. 1c).
The density of recombination hotspots declines from
G1b toward G2 (red bars, Fig. 3c), in accord with the
previous finding of a reduction of homologous recom-
bination in late-replicating DNA [33]. High frequencies
of GV hotspots are found in G2-phase DNA despite a
low level of recombination hotspots.
The DNA sequence windows that undergo early repli-

cation in phase G1b are enriched in numerous func-
tional genomic features including the histone-
modification sites and gene/regulatory sites throughout
the Genic, Proximal, and Distal zones (red rectangles,
Fig. 8a top panel), whereas sequence windows in the
late-replicating phases S3-G2 are relatively depleted of
these functional features (blue rectangles). Nonetheless,

within these function-depleted phases, the presence of
functional features is more evident in regions where hot-
spots and clusters locate, especially the histone-
modification sites in the Distal-zone hotspots and clusters
(red rectangles in middle and bottom panels, Fig. 8a). Six
groups of gene pathways are found enriched in the Distal
zones (Fig. 8b and Supplementary Figure S11). Among
them, the autoimmune thyroid disease, antimicrobial
humoral response, natural killer cell, xenobiotic metabol-
ism, epidermal protein disulfide-binding, sensory percep-
tion, and neuroactive ligand-receptor interaction pathways
are all associated with GV hotspots (red and pink circles,
Fig. 8b). Moreover, the latter two pathway groups display
the foremost hotspot enrichment, with 46% and 64% of
their genes respectively (black slices, Fig. 8c) showing the
co-existence of positive, balancing and purifying selections,
in contrast to the immune system gene loci which are dom-
inated by positive and balancing selections (Fig. 2c). These
findings indicate that the presence of hotspots and clusters
could attract various kinds of natural selection forces that
can facilitate pathway development even in regions of the
genome that usually harbor relatively few functional gen-
omic features.

Enrichment of disease-related variants in hotspots and
clusters
The close relationships of genetic-variant hotspots and
clusters with different functional genomic features (Fig. 6
and Supplementary Figure S10) suggest that perturbations
in the DNA sequences in these regions may result readily
in disease-related mutations. In accord with such expect-
ation, the densities of germline SNPs identified from
GWAS, the breakpoints of disease-related germline vari-
ants in the ClinVar database, and the breakpoints of som-
atic tumor CNVTs are all significantly enriched within the
GV hotspots and clusters relative to simulated regions in
the human genome (Fig. 3d). The density of GWAS-
identified SNPs within the total GV hotspots is increased
to 1.4-fold, to as high as 7.1-fold in ECNV hotspots, or
synergistically to 19.0-fold in the SNP + ECNV clusters
relative to the autosomal average, far exceeding the sum
of their separate enhancements in the SNP and ECNV
hotspots (Supplementary Table S6). Instead, clusters
formed by SNP and SID does not have this kind of syner-
gistical elevation, but rather a reduced level of disease-
associated variants relative to their separate hotspots. This
observation suggests that the potential role of SNP +
ECNV clusters is pivotal in genomic regions attributable
to complex traits and diseases. Furthermore, the GWAS-
identified SNPs in the GV hotspots or the clusters are
characterized by comparable risk allele frequencies, but
higher effect sizes and contributions to heritability, relative
to the GWAS-identified SNPs in non-hotspot regions
(Supplementary Figure S12). Besides, the GWAS-
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identified SNPs are found significantly enriched inside or
near SVAcd, AluYy, AluS, AluJ, FLAM, MIR, and L2 ret-
rotransposons but not the youngest SVAef, AluYvy, and
L1vy retrotransposons (Fig. 4b).
The density of CNVTs is likewise increased to 1.9- and

2.9-fold within total hotspots and clusters respectively; or
as high as 13.7-fold in the LCNV hotspots and 28.3-fold in
the ECNV hotspots (Supplementary Table S6), demon-
strating thereby the association of hotspots and clusters
with enhanced germline as well as somatic disease-related
mutations. Upon division of the somatic CNVTs into the
four size-classes of SCNVT, MCNVT, LCNVT, and
ECNVT as in the case of the germline CNVs, LCNVTs

are most strongly associated with LCNV hotspots, and
ECNVTs most strongly with ECNV hotspots (Fig. 6), indi-
cating that LCNV hotspots represent significant sites of
LCNVT formation, and ECNV hotspots represent signifi-
cant sites of ECNVT formation, in keeping with the earlier
finding that recurrent germline CNVs provide a useful
basis for predicting cancer susceptibility [74]. CNVT
recurrency in tumors is particularly strong in the ECNV,
LCNV, and MCNV hotspots, in clusters, and in SNP hot-
spots (Fig. 3e). Such enrichments of disease-related vari-
ants in the hotspots and clusters are observed regardless
of the genomic zone or replication timing of the DNA se-
quences (Fig. 8a middle and bottom panels).

Fig. 8 Distributions of genomic features in different replication phases and genomic zones. a Levels of various genomic features (as shown on x-
axis) within all 1-kb windows (upper panel), all hotspots (middle panel), or all clusters (lower panel) belonging to replication phases G1b-G2 in the
Genic (G), Proximal (P), or Distal (D) zones, in accordance to the red-blue thermal scale for fold-change over autosomal average (see
Supplementary Table S10 for data on genomic-feature enrichments). b Enrichment map for Distal-zone genes annotated using g:Profiler [71]
based on Gene Ontology biological process [72] and KEGG [73]. Each node represents a pathway (with 3 to 350 genes) significantly enriched in
Distal zones with Benjamini-Hochberg false discovery rate < 0.05, and node size is proportional to the number of Distal-zone genes belonging to
the pathway (see pathway IDs in Supplementary Figure S11). Pathways are connected by a gray edge when they share ≥ 50% genes. Node color,
represented by the red-blue thermal scale, indicates the fold-change of the fraction of the genes over the fraction of 1-kb sequence windows
that overlap with hotspots in the Distal-zone S4 and G2 phase DNA (see Supplementary Table S11). Asterisks mark pathways that overlap with
cluster(s). c Selection status of pathway genes that overlap with hotspots in the Distal-zone S4 and G2 phases. Fractions of genes overlap only
with PosSel-Hs (red slices), with both PosSel-Hs and NegSel-Hs (purple slices), and with all (black slices) or none (beige slices) of PosSel-Hs,
NegSel-Hs, and BalSel-Hs
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There are in the human genome 448 genes that con-
tain one or more clusters, and 24 genes that contain
more than two clusters, reaching a maximum of nine
clusters in the diabetes-related PTPRN2 and the poten-
tial tumor suppressor CSMD1 (Supplementary Table
S4). Within 33 of these cluster-containing genes, the
cluster portions are significantly enriched with somatic
CNVTs compared to non-cluster portions (see “Somatic
CNV breakpoints in cluster-containing genes” in
“Methods” section), which attests to the extraordinary
effectiveness of clusters in the generation of CNVT mu-
tations. Among the 448 cluster-containing genes, 113
genes are found in the Network of Cancer Genes 6.0
[75] or the Tumor Suppressor Gene Database 2.0 [76],
revealing significant overlaps between cancer genes with
hotspot clusters (p = 8.1 × 10−11, Fig. 3f), or with hot-
spots of SNP, SID, MST, SCNV, or MCNV (Fig. 3f).

Discussion
Formation mechanisms for common and rare variants in
hotspots and clusters
SNPs and structural variations in GWAS are widely
employed as common and rare genetic markers respect-
ively the “Common Disease-Common Variant” and
“Common Disease-Rare Variant” research strategies [5,
12, 13]. In the present study, they are both found to be
concentrated in hotspots and clusters that cannot be
formed due to background mutations, in a clear depart-
ure from the neutral evolution model [77–80]. The pres-
ence of numerous hotspot clusters that comprise an
SNP hotspot along with the hotspot of some structural
variations (Fig. 2 and Supplementary Figure S10) sug-
gests that the formation mechanisms for the SNP hot-
spots overlap with those for the hotspots of SIDs, MSTs,
SDPs, and CNVs of different lengths in the same clus-
ters. It follows that the different structural variations do
exhibit overlaps among themselves, as exemplified by
the co-localizations between copy number gains and
copy number losses, insertions and tandem duplications,
as well as duplications and SDPs, supporting that the
unstable genomic regions are prone to diversified genetic
variants (Supplementary Figure S13). In addition, SNPs,
SIDs, MCNVs, LCNVs, and ECNVs are enriched at the
telomeric termini of autosomes (Supplementary Figure
S14), which is consistent with earlier report of SNP en-
richment near the ends of some chromosomes [21].
Such termini-proximal concomitance of GVs might be
related to the abundance of terminal repetitive se-
quences, which could serve as homologous templates for
recombination to maintain proper telomeric length and
preserve chromosomal stability [81–83]. Evidence sug-
gests that homologous recombination can be mutagenic,
producing SNPs due to the error-prone nature of the
DNA polymerase involved, or generating structural

variations via ectopic homologous recombination events
between repeated sequences [30, 32, 84, 85]. As well, the
association of homologous recombination with the for-
mation of a range of genetic variants is indicated by the
co-occurrence of elevated genetic-variant density and
high recombination intensity (Fig. 3a, b). However, only
15.0% of GV hotspots overlap with the previously identi-
fied recombination hotspots (Supplementary Table S7),
possibly because of underestimation of recombinations
on account of the reduction of their footprints by the
strong positive selection in the GV hotspots (Fig. 5f), or
by other mutagenic mechanisms such as replication-
based mechanisms or the non-homologous end joining
that contributed to the formation of the GV hotspots
and clusters. This is demonstrated by the high concen-
trations of GV hotspots in G2 phase-replicated DNA
despite the relative scarcity of recombination hotspots in
such DNA (Fig. 3c), coinciding with the stronger pres-
ence of non-homologous end joining compare to hom-
ologous recombination in G2-phase DNA [33].
It is noteworthy that nucleotide differences between

highly similar sequences (e.g., SDPs) located at different
genomic positions may be falsely identified as SNPs due
to mismapping of short-reads [25], giving rise to biased
associations of SNPs with structural variations. On this
basis, false-positive SNPs may be expected to be particu-
larly frequent near SDPs where the repetitive sequences
would be conducive to such mismapping. Since SNP
densities are much lower in the vicinity of SDPs relative
to the vicinities of MCNV, LCNV, and ECNV (Supple-
mentary Figure S13), subtraction of the level detected in
the vicinity of SDP from the SNP levels observed from
the vicinity of the various CNVs may be considered as a
useful correction measure for those SNPs that are near
the MCNV, LCNV, and ECNV.

Negative effects of hotspots and clusters
The suggestion that retrotransposons could mediate
homologous recombination [26, 27] is supported by the
close co-localizations of a range of genetic-variant hot-
spots and clusters with different retrotransposons, and
the positive co-localization of AluYy insertions not only
with various hotspots and clusters but also with various
recombination features (Figs. 4b and 6). Such findings
indicate that GV hotspots and clusters harbor sites of
genomic instability which expedite the production of
neutral, advantageous, or detrimental variants through
recombination. The detrimental effects are evident in
the strong associations of hotspots and clusters with
cancerous CNVTs, and the enrichment of disease-
associated variants in GWAS (Fig. 3d-f). Furthermore,
the parallel declines in Rec-H and CNVT in G1b- and
G2-replicating DNA (Fig. 3c) support the proposal of
homologous recombination as a source of CNVTs [84];
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and the strong associations between LCNVT and LCNV
hotspots, as well as between ECNVT and ECNV hot-
spots (Fig. 6) suggest that the selfsame sets of cis-acting
retrotransposons are utilized as nucleation points for the
formation of both germline CNV and somatic CNVT
through recombination [86, 87]. Moreover, clusters are
also observed for somatic structural variations implying
mechanistical linkages of genetic variants in those clus-
ters [88]. However, the germline CNVs and somatic
CNVTs are dissimilar in their length distributions,
resulting in a merger of the four distinct peaks of germ-
line CNVs into a more even distribution of CNVTs of
different lengths (Fig. 1a, bottom panel). A plausible rea-
son may be that, although the occurrences of both types
of CNVs are enhanced by recombination events, the fre-
quencies of which vary between the different replication
phases (Fig. 3c), the germline CNVs had gone through a
process of natural selection to eliminate CNVs disadvan-
tageous to the survival of the host lineage. On the other
hand, the somatic CNVTs include newly formed ones
that have not been shaped as extensively by natural se-
lection, and hence follow a close-to-normal distribution.
The association of CNVTs with GV clusters is particu-
larly strong: there are 33 genes in the genome where
CNVT breakpoints are significantly enriched within seg-
ments bearing GV clusters relative to other segments of
the gene (overall Bonferroni-corrected p value < 0.05).
The significance of such enrichment reaches p < 10−58

for CACNA1C and SNX29 from the Network of Cancer
Genes, and p < 10−61 for WWOX and CSMD1 from the
Tumor Suppressor Gene Database (Supplementary
Table S4). Therefore, the cluster segments of such genes
clearly rank among the hotspots of oncogenesis within
the genome.

Positive effects of hotspots and clusters
GV hotspots and clusters produce advantageous genetic
variants that could be further elevated in frequency by
positive selection to expedite functional adaptation. This
is illustrated by (i) enrichment of SNPs with DAF > 0.95 in
hotspots and clusters in all five ethnic populations (p <
10−10, Fig. 5a), accompanied by large overlaps of PosSel-
Hs with SNP, LCNV, and ECNV hotspots (Supplementary
Table S3B); (ii) rise of the inter-population differentiation
|ΔDAF| owing to positive selection within the clusters
(Fig. 5b); and (iii) increase of haplotype homozygosity,
measured by |nSL|, on account of positive selection in all
five ethnic populations (p < 10−24, Fig. 5c). Outstanding
examples are provided by the MHC- and IG-loci which
are enriched with SNP, SID, MCNV, LCNV, and ECNV
hotspots associated with positive and balancing selections
(Fig. 2c), revealing the exceptional hotspot- and cluster-
driven evolutionary development of these immune system
loci.

Another example of the positive functional effects of hot-
spots and clusters is provided by the development of the ol-
factory and taste sensory pathways, and neuroactive ligand-
receptor interaction pathways through collaboration of bal-
ancing, positive, and purifying selections in the hotspot and
cluster regions that amount to only 3.3% of the total base
pairs in these otherwise functional deserts of the S4- and
G2-replicating Distal zones (Supplementary Table S8),
which clearly demonstrates the important advantage of hot-
spots and clusters as incubators for the accelerated adaptive
evolution. The dominance of purifying selection in the
protein-coding regions of genes [89] suggests that a major-
ity of the coding sequences in the human genome are
already largely optimized by positive selection, and there-
fore in need of shielding by purifying selection against ad-
verse sequence alterations. On the other hand, the much
weaker purifying selection than balancing or positive selec-
tion observed in the immunoprotein genes is consistent
with the younger age of these genes, where evolutionary de-
velopment might still be ongoing, propelled by genetic vari-
ants working in conjunction with balancing and positive
selections. Interestingly, the depletion of LCNV, ECNV,
and SDP entries from the Proximal zones relative to the
Distal or Genic zones (Fig. 1b) suggests that the presence of
lengthy interruptions could be particularly disruptive to
tightly organized sequences in the proximal zones such as
the sequences flanking transcription factor binding sites, is
essential to the function of genomic features in the Prox-
imal zones, which is in accord with the frequent detection
of purifying selection in the Proximal zones [35, 67].
The coincidence between hotspots of GVs and positive

selection may seem paradoxical, for one might suppose
that the selection process would sweep away the GVs.
However, a high level of the nSL statistic could serve as
an indicator for the existence of “soft sweep” where gen-
etic variants or multiple variants at a single locus remain
standing until the sum of their allele frequencies reaches
one [41]. Genetic forces and evolutionary history such as
the complex demographic history of human populations
may render difficult a rigorous description of positive se-
lection by any single measurement [58, 90]. For example,
population bottlenecks can lead to the shift of DAF to
extreme values; a population expansion may increase
ΔDAF between population pairs; and the nSL statistic
may vary with the demographic model employed. There-
fore, the observation of enhancement of positive selec-
tion in GV hotspots and clusters based on all three
measures for detection of positive selection signals im-
proves the reliability of the observed enhancement.

Missing heritability due to co-occurrence of
recombination and positive selection
Genetic components associated with complex traits and
disorders could be missed in genomic regions
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simultaneously subjected to high levels of positive selec-
tion and recombination. One of such cases has been well
evident in a 3551-bp segment of the schizophrenia-
associated GABRB2 gene that codes for the β2 subunit
of GABAA receptor. The derived alleles of a number of
SNPs within this segment are under recent and ongoing
positive selection, for they increase through alternative
splicing the production of the longer isoform of the β2
subunit and diminish the production of the shorter β2
subunit favored by the ancient alleles [91]. The ancient
alleles become less fit than the derived alleles under
modern conditions, resulting in positive selection of the
derived alleles. The same has been observed in some
other genes [92–95]. In the meanwhile, this segment
harbors an AluYi6 insertion, which serves as a recom-
bination center to largely enhance recombination rate
within the segment [96]. Under such circumstances, the
elevated recombination can play positive and negative
roles simultaneously. On the one hand, novel sequence
variations and haplotypes are brought about by recom-
bination for positive selection to increase the frequencies
of the advantageous genotypes. On the other hand, se-
quence alternations could also lead to functional pertur-
bations that associate with the etiological basis of
schizophrenia [97]. The co-occurrence of recombination
and positive selection points out a possible genetics
mechanism for the development of complex diseases.
A wide range of schizophrenia-like phenotypes dis-

played by the GABRB2-knockout mice, and the reversal
of these phenotypic alterations by antipsychotic drug
further underline the pivotal role of GABRB2 in the de-
velopment of schizophrenia [98]. As well, the association
between GABRB2 and schizophrenia has been validated
by multiple genetic studies on different ethnic popula-
tions [99–101], and SNPs, haplotypes and CNVs in the
3551-bp segment are found to be associated with schizo-
phrenia taking a candidate gene approach [102, 103].
However, genome-wide association studies report no sig-
nificant association between any of the SNPs in this
3551-bp segment and schizophrenia. Fine-resolution
linkage disequilibrium analysis in this segment reveals
much higher recombination in the ancestral allele-
containing haplotype groups relative to the derived
allele-containing haplotype groups, suggesting active re-
combination in this region together with intense positive
selection on the derived alleles [96]. Such complexity
due to the co-occurrence of recombination and positive
selection, interacting with each other to affect local gen-
etic diversity landscape, could blur the allele and haplo-
type signals thereby potentially contributing to the
missing heritability problem in GWAS. The depletion of
GWAS-identified SNPs near the youngest (viz. SVAef,
AluYvy, and L1vy), versus enrichment near the older
(viz. AluS, AluJ, MIR, etc.), retrotransposons might point

to missing associations stemming from the elevated
levels of recombination and positive selection in the
youngest retrotransposons (Fig. 4b). Therefore, the gen-
omic regions that are subject to pronounced recombin-
ation and positive selection, such as the genetic-variant
hotspots and clusters or the vicinity of young retrotran-
sposons, would merit close investigation, more reliance
also may be accorded to genetic variants, such as CNVs,
that are more resistant to the obscuring effects of re-
combination together with selection.

“Common disease-hotspot variant” hypothesis
The dissimilar associations of SCNV and MCNV hot-
spots with histone-modification sites, SNP and SID hot-
spots with methylation-related sites, and LCNV and
ECNV hotspots with somatic CNVTs (Fig. 6) are indica-
tive of the specialized deployment of different genetic
variants in the genome to meet specific functional needs.
Notably, the associations observed between hotspots and
genomic features are unlikely stemmed from the similar-
ity in their detection methods, because data on different
genomic features and genetic variants were generated by
independent projects with different experimental
methods. The strength of association of GV hotspots
and clusters with function is underlined by the findings
that 34.8% of total GV hotspots and 43.9% of total clus-
ters display some balancing, positive, or negative selec-
tion. As a result, sequence perturbations in these pivotal
sites may be expected to give rise to phenotypical
changes including human disorders. It is noteworthy
that searches for phenotype-genotype associations are
usefully guided by the “Common Disease-Common
Variant” and “Common Disease-Rare Variant” strategies.
However, the former is limited by the fraction of herit-
ability of complex traits explained by common SNPs,
which is highly variable (20–90%) for different traits and
different studies [104, 105], and the latter is confronted
by the difficulty of finding the rare variants [12, 35], both
leaving substantial proportions of heritability unex-
plained. The “hypothesis-driven” strategies have been
found useful in certain cases, but they usually require
some measure of prior knowledge about the disease
mechanism. It has also been found that incorporation of
functional genomic data in association studies also can
increases the discovery of trait/disease-associated sites
by about 5% [106]. As well, it is important that the full
implications of the sequence changes also should not be
missed. Chromatin plays important roles in maintaining
DNA stability by preventing recombination processes
[107, 108]. By remodelling the chromatin, histone modi-
fications might impact on recombination events that
lead to genetic variants, as exemplified by the increased
level of H3K56 acetylation that disrupts homologous-
based DNA damage repair and causing extensive CNVs
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in the yeast genome [108–110]. This is in accord with
our observation of strong co-localization of histone
modification sites with CNV hotspots, especially
medium size MCNVs but not other sizes of CNVs, in
the human genome (Fig. 6). The selective association
with histone modification sites is particularly evident in
MCNVs comparable in length with DNA sequences that
wrap nucleosomes (Fig. 7 and Supplementary Figure S9),
suggesting that some of the sequence alterations in-
volved in chromatin remodelling during DNA replica-
tion could be related to the nucleosome units.
Therefore, it would be of interest to examine whether

MCNVs might play some role in the structure and func-
tion of nucleosomes. Accordingly, when an investigator
finds that some disease displays correlation with an
MCNV alteration, he would be encouraged to investigate
in depth any histone modification sites in the vicinity,
thereby reducing the chances of missing some important
functional implication of the MCNV observed. Accord-
ingly, in view of the evident elevations of GWAS discov-
ery rates in GV hotspots and clusters, and the enriched
presence of both LCNVTs in LCNV hotspots and ECNV
Ts in ECNV hotspots, intensive efforts directed to the
discovery of common or rare genetic variants in hotspots

Fig. 9 Schematic summary of present findings. Public genetic-variant databases are employed to identify density-based hotspots and clusters,
which are found to be dynamic centres with accentuated positive and/or negative changes in the genome. On the one hand, they work in
conjunction with positive selection to enhance sequence diversity, evolution of specific genes and pathways, and development of functional
genomic features. On the other hand, they are co-localized with destabilizing retrotransposon elements, and occurrences of homologous
recombination (HR) in the early DNA replication phases, and non-homologous (NH) repair in the late DNA replication phases. Their associations
with high GWAS discovery rates and somatic variants signal the importance of associations with complex traits and diseases, and therefore their
utility as the basis for a potential “Common Disease-Hotspot Variant” strategy in a search for the missing heritability in association studies
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and clusters, and characterization of their potential asso-
ciation with complex disease and traits, appear war-
ranted in order to search for some of the missing
heritability.

Conclusion
Overall, in the present study, a high-resolution examin-
ation has been conducted throughout the Genic, Prox-
imal, and Distal genomic zones in the human genome
on eight kinds of germline genetic variants retrieved
from public databases. Identification of genetic-variant
hotspots and clusters based on regional densities of gen-
etic variants, independent of allele and haplotype fre-
quencies, minimizes underestimation on account of
positive selection and recombination saturation. The
findings on their distributions, formation mechanisms,
associated genomic features, as well as their effects on
functional development, complex diseases, and traits
underline the pervasive and double-edged sword nature
of their impact on the human genome (Fig. 9). They ad-
vance functional genome evolution, but they also consti-
tute important foci of cancers and other diseases, both
arising from their association with genome instability.
The attributions of common and rare variants to com-
mon diseases and traits, as formulated in the “Common
Disease-Common Variant” and “Common Disease-Rare
Variant” hypotheses respectively [5, 12, 13], have
brought about important advances in the understanding
and detection of the genomic variations related to the
phenotypical changes; it is recognized nonetheless that
they remain confronted by the problem of missing herit-
ability, where the genomic variants associated with dis-
eases and traits remain largely uncovered [7, 10, 11]. In
view of this, and the enrichment of both common and
rare genetic variants in GV hotspots and clusters, it is
proposed that “Common Disease-Hotspot Variant” hy-
pothesis could provide an additional, complementary ap-
proach. The basis of this hypothesis is that common
diseases and traits are frequently attributable to genetic
variants, common as well as rare types, occurring in re-
gions marked by extraordinary genome instability. Such
instability at these unstable regions would enhance the
probability of not only germline variants but also dis-
ease- or trait-associated germline variants and disease-
related somatic variants. Thus, the GV hotspots and
clusters represent an unexpected source of disease-
related heritability that could easily be missed due to the
effects of local recombination at or near saturation levels
along with directional selection on allele or haplotype
frequencies, and intensified discovery and mutation
monitoring of hotspots and clusters could help to un-
cover some of this missing heritability.
Since the landscape of the unstable regions may be

complicated by saturation of recombination and

selection, a Common Disease-Hotspot Variant
hypothesis-based approach requires experimental and
statistical methods that are relatively insensitive to re-
combination and selection. In this regard, structural var-
iations such as CNVs will serve as valuable markers, for
they are, compared to SNPs less prone to mutation sat-
uration arising from increased recombination. GV
density-based statistical methods are also advantageous
on account of their relative immunity to directional se-
lection as compared to statistical methods of population
genetics commonly used in association studies, which
are often frequency-based and susceptible to the effects
of selection on allelic and haplotype frequencies. There-
fore, through additional focus on GV hotspots and clus-
ters, and increased adoption of frequency-independent
statistical methods, some of the missing heritability may
come to be captured, deepening insight into the genetics
of complex disorders and traits, and improving the de-
tection of disease- or trait-associated variants.
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