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Comprehensive assessments of germline
deletion structural variants reveal the
association between prognostic MUC4 and
CEP72 deletions and immune response
gene expression in colorectal cancer
patients
Peng-Chan Lin1,2,3,4, Hui-O Chen1, Chih-Jung Lee1, Yu-Min Yeh3,4, Meng-Ru Shen5,6,7 and Jung-Hsien Chiang1,2*

Abstract

Background: Functional disruptions by large germline genomic structural variants in susceptible genes are known
risks for cancer. We used deletion structural variants (DSVs) generated from germline whole-genome sequencing
(WGS) and DSV immune-related association tumor microenvironment (TME) to predict cancer risk and prognosis.

Methods: We investigated the contribution of germline DSVs to cancer susceptibility and prognosis by silicon and
causal inference models. DSVs in germline WGS data were generated from the blood samples of 192 cancer and
499 non-cancer subjects. Clinical information, including family cancer history (FCH), was obtained from the National
Cheng Kung University Hospital and Taiwan Biobank. Ninety-nine colorectal cancer (CRC) patients had immune
response gene expression data. We used joint calling tools and an attention-weighted model to build the cancer
risk predictive model and identify DSVs in familial cancer. The survival support vector machine (survival-SVM) was
used to select prognostic DSVs.
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Results: We identified 671 DSVs that could predict cancer risk. The area under the curve (AUC) of the receiver
operating characteristic curve (ROC) of the attention-weighted model was 0.71. The 3 most frequent DSV genes
observed in cancer patients were identified as ADCY9, AURKAPS1, and RAB3GAP2 (p < 0.05). The DSVs in SGSM2 and
LHFPL3 were relevant to colorectal cancer. We found a higher incidence of FCH in cancer patients than in non-
cancer subjects (p < 0.05). SMYD3 and NKD2DSV genes were associated with cancer patients with FCH (p < 0.05).
We identified 65 immune-associated DSV markers for assessing cancer prognosis (p < 0.05). The functional protein
of MUC4 DSV gene interacted with MAGE1 expression, according to the STRING database. The causal inference
model showed that deleting the CEP72 DSV gene affect the recurrence-free survival (RFS) of IFIT1 expression.

Conclusions: We established an explainable attention-weighted model for cancer risk prediction and used the
survival-SVM for prognostic stratification by using germline DSVs and immune gene expression datasets.
Comprehensive assessments of germline DSVs can predict the cancer risk and clinical outcome of colon cancer
patients.
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Introduction
Large-scale germline structural variants, especially dele-
tion structural variants (DSVs), can affect gene expres-
sion with a partial or complete loss of gene function and
increased cancer risk in patients [1, 2]. Several studies
have reported the germline pathogenic DSVs through
whole-genome sequencing (WGS) [3, 4]. For example,
patients with germline RAD51C exon 5 deletion or ATM
exon 9 deletion were confirmed as having hereditary
cancer syndrome [5]. Instead of multiplex ligation-
dependent probe amplification (MLPA) and next-
generation sequencing (NGS) panels, WGS with mul-
tiple cancer-associated DSVs has become more widely
used for cancer risk assessment. However, the role of
germline DSVs and DSV immune-related association
tumor microenvironment (TME) in cancer risk and
prognosis had not been sufficiently understood.

To investigate the contribution of germline DSVs to
cancer susceptibility and prognosis, we used silicon and
causal inference models. Prediction models are import-
ant when classifying individuals for predicting the risk
and survival stratification to minimize the impact of can-
cer and optimize treatment [6]. The application of ma-
chine learning techniques, such as deep learning (DL)
and inherited risk genomic variation analysis, is rapidly
developing [7, 8]. As DL has improved the ability to pre-
dict inherited cancer genomic susceptibility, we focused
on DL as an attention-weighted model with multilayer
perceptrons (MLPs) [9], which can reveal the import-
ance of each DSV for predicting cancer risk. Addition-
ally, we used the survival support vector machine
(survival-SVM) for selecting the features of prognostic
DSVs.
Here we describe the prediction model of germline

DSVs in cancer patients with and without family cancer
history (FCH). We used a machine learning model for
survival stratification to assess the prognosis and

demonstrated the biological relevance of germline DSVs
and TME-related immune gene expression.

Results
Germline DSV detection from whole-genome sequencing
We applied feature extraction and selection methods to
analyze genomics data for the detection of cancer-
associated, immune-associated, and prognosis-associated
DSVs. (Fig. 1).We utilized the PopDel [10] tool to detect
germline DSVs. The WGS data of cancer patients and
non-cancer subjects were input simultaneously for joint
calling. A total of 14,772 autosomal DSVs with sizes ran-
ging from 500 to 10,000 base pairs were called simultan-
eously across all samples. We focused our analysis on
DSVs occurring in at least 1% of the samples of both
cancer and non-cancer populations at minor allele fre-
quency (MAF) above 5% [11]. A total of 2919 DSVs that
passed the filtering criteria were further used to build a
classification model.

Predicting cancer risk with whole-genome DSVs and MLP
Germline genomic DSVs are known to be associated
with increased risk for cancer [12], and several studies
have reportedly applied machine learning tools for devel-
oping prediction models [13]. To learn the importance
of each DSV for classifying cancer or non-cancer sam-
ples, we consider the attention-weighted model to be the
final approach. Furthermore, the attention-weighted
model had the best performance to predict cancer risk.
Herein, several machine learning strategies for classifica-
tion were applied and evaluated. We used an SVM with
linear kernel and logistic regression (LR), both of which
were well-known linear models. We also used random
forests (RF) to test nonlinear results. Moreover, neural
network strategies, such as multilayer perceptron and
attention-weighted models, were also adopted (Fig. 2a).
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Fig. 1 Study design and workflow. Study design and overall workflow of WGS analysis of germline DSVs and immune gene expression for cancer
risk prediction and survival stratification. In total, 192 cancer patients (i)—comprised of 120 with colorectal cancer, 29 with endometrial cancer, 35
with ovarian cancer, and eight with breast cancer—were enrolled in the study group, and 499 non-cancer subjects (i) were included in the
reference group. Genomic data, including WGS, gene expression, clinical outcome, and FCH, were collected. First, we used the PopDel method (ii)
to detect DSVs and perform data preprocessing (ii) from the WGS analysis of all subjects. The cancer risk predictive model (iii) was built with an
attention-weighted model. We also studied DSVs in familial cancer (iv). Second, we examined the relationship between DSVs and the tumor
microenvironment (v). Immune gene expression data were normalized. We constructed an immune gene expression-associated DSV correlation
matrix with the point-biserial correlation. Third, a machine learning method with a survival support vector machine (survival-SVM) and Kaplan–
Meier survival analysis was applied to examine prognosis and survival (vi)
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The area under the curve (AUC) from the receiver op-
erating characteristic curve (ROC) and the performance
of models (i.e., sensitivity) are crucial for clinical use.
Among these methods, the attention-weighted model
(AUC = 0.71, sensitivity = 0.58) performed the best with
2919 DSVs (Fig. 2b and Supplementary Fig. 1). All of the
model’s performances were improved with 671 cancer-
associated DSVs. In total, 671 of 2919 significant DSVs
were selected for the prediction of cancer risk with posi-
tive weights from the attention-weighted model (Supple-
mentary Table 1A). There were no demographic biases
in the population data (Supplementary Fig. 2). The size
and distribution of deletions on each chromosome were
no different between cancer patients and non-cancer
subjects (Supplementary Fig. 3). The cancer and non-
cancer samples could be distinguished with 671 DSVs in
principal components analysis (PCA). The 671 DSVs
were divided into two clusters by using hierarchical clus-
tering. We used REACTOME [14] to perform pathway
enrichment of genes. There were 92 genes in the first
cluster and 125 genes in the second cluster. In the first

cluster, there were 11 genes (MUC17, MUC19, MUC4,
MUC6, GALNT9, B3GNTL1, KCNMB2, UNC13B,
RIMS1, SMYD3, MYT1) that enriched 19 significant
pathways (p value < 0.05) which were relevant to O-
linked glycosylation of mucins, Neurotransmitter Release
Cycle, defective factor causing familial hyperphosphate-
mic tumoral calcinosis, etc. In the second cluster, there
were 27 genes (KCNJ6, ADCY9, GNG2, ADCY8,
PFKFB3, ESR1, MUC12, MUC4, GALNT9, B3GNTL1,
ATP13A4, ATP2B4, ATP11A, SBF2, ADAP1, F11, CACN
G7, KCNIP1, CACNA1C, RPTOR, PSMA8, ACTN2,
PPP6R2, CYP4F11, CYP4F12, SOD2) that enriched 47
significant pathways (p value< 0.05) which involved de-
fective factor causing hereditary angioedema, Ion trans-
port by P-type ATPases, diseases of hemostasis, etc.
(Supplementary Table 2). However, there were no differ-
ences between each type of cancer (Supplementary Fig.
4A). Further analyses were conducted to determine the
genes with DSVs and relevant pathways related to differ-
ent cancer types. The result indicated that the DSVs in
SNTG2, PCMT1, DACT2, CBX3, ATP11A, and SHC2

Fig. 2 Feature selection of DSVs to distinguish cancer and non-cancer subjects. a The architecture of the attention-weighted model for selecting
the cancer risk DSV features. The primary purpose was to classify cancer or non-cancer subjects by the neural network. This was a MLP model
based on the attention mechanism. We used n samples (xn) as input in the attention-weighted model: every sample had m (Delm) filtered
deletions. A value of 1 in the deletion vector indicates that the sample has the specific deletion, while 0 implies no deletion. A weighted vector (
→W ) is associated to the input layer to identify the importance of each deletion (red color gamut). Additionally, an embedding layer (E
represents the embedding table, e denotes the embedding size) is applied to reduce the feature size and each deletion. We took the sum of
each column and obtained a vector that can represent the information of the input deletion features (rn, e); this is the input of multilayer
perceptron. The output of MLP utilizes the SoftMax layer. The output labels are cancer or non-cancer subjects. b Performance of five machine
learning strategies (attention-weighted model, MLP SVM, RF, and LR) for cancer risk prediction with different number of features (2919 and 671
cancer-associated DSVs). The attention-weighted model was more sensitive (AUC = 0.71, sensitivity = 0.57) than the other methods. All of the
models performance are improved with 671 cancer-associated DSVs. c PCA plot by cancer-associated DSVs. Red dots represent cancer subjects,
and blue dots represent non-cancer subjects. A total of 671 cancer-associated DSVs with positive weights were used for PCA. DSVs can
distinguish cancer and non-cancer subjects
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were associated with breast cancer. DSVs in SGSM2 and
LHFPL3 were relevant to colorectal cancer, whereas
ADAP1, DLGAP2, ERC1, and PPP6R2 were related to
gynecologic cancer (Supplementary Fig. 4B and C).

The mutational landscape of DSVs and their significance
in familial cancer patients
The germline mutational landscape of DSVs plays an
important role in cancer patients with or without
FCH. Patients who have one or more blood relatives
within third-degree suffering from any types of cancer
are considered having family cancer history. The odds
ratios were estimated to identify which genes with
DSVs were associated with FCH. We chose the top
10 DSV genes associated with an increased risk of
cancer (odds ratios (OD) > 1) and the bottom 10 DSV
genes associated with a decreased risk of cancer
(OD< 1) from 671 DSVs associated with cancer risk

(Fig. 3a). The top 10 genes frequently observed in
cancer patients were ADCY9, RAB3GAP2, AURKAPS1,
EYS, SHC2, DPP6, FREM2, ESR1, TBC1D22A, and
ACTN2. The ten genes frequently observed in non-
cancer subjects were SNTG2, LHFPL3, DACT2, NKAI
N2, KALRN, ABR, LMNTD1, PLEKHA7, DOC2B, and
ADPRHL1 (Supplementary Table 3). We also studied
the prevalence and spectrum of well-known germline
cancer susceptibility genes in our subjects [15]. The
frequencies of 26 cancer susceptibility genes are
shown in Fig. 3b. Deletions in the FANCA, POLD1,
and STK11 genes were observed in cancer patients
only. The frequency of gene deletions was almost the
same between cancer and non-cancer subjects. The
mutational landscape of DSV genes is shown in Fig.
3c. There were 57 cancer-associated DSV genes with
a p value < 0.05 in the cancer and non-cancer groups
(Supplementary Table 4).

Fig. 3 The frequency spectrum of DSVs in cancer and non-cancer subjects and germline cancer susceptibility gene analysis. a Bar plot of the top
10 DSV genes with significant odds ratios and p-adjusted values < 0.05 by the false discovery rate (FDR) in the cancer group and non-cancer
group separately. The x-axis indicates the percentage of subjects who carry DSV genes, while the y-axis represents the DSV genes. b Heatmap of
57 DSV genes and clinical information. Genes with an odds ratio and p-adjusted value < 0.05 by the FDR were selected. The clinical information
includes sex, age, and FCH. c Bar plot of 26 DSV genes intersected in 565 germline cancer susceptibility genes in cancer and non-cancer subjects.
The x-axis indicates the well-known cancer susceptibility genes, and the y-axis indicates the frequency of the genes in cancer and non-cancer
subjects. FANCA, POLD1, and STK11 gene deletions occurred only in the cancer group
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In this study, we found a higher incidence of FCH in
cancer patients than in non-cancer subjects (Fig. 4a, p
value = 0.0003). The study had included 177 cancer pa-
tients and 407 non-cancer subjects with family history.
Ninety-one of 177 cancer patients presented with family
cancer history. One hundred seventy-seven of 407 non-
cancer subjects presented with family cancer history. The
relationship of cancer and non-cancer subjects with family
cancer history was tested by Fisher’s exact test. A higher
percentage of cancer patients have a family cancer history
(Fig. 4a). The five most cancer types in family-affected
members are liver cancer, colorectal cancer, lung cancer,
breast cancer, and gastric cancer (Supplementary Table 5).
Moreover, certain DSV genes were associated with can-

cer or non-cancer subjects with or without FCH (Fig. 4b
and c). MGAT4C, HSPA4L, ZSCAN5A, LOC100505841,
and NALCN gene deletions were associated with cancer
patients without FCH (p < 0.05), while SMYD3 and
NKD2DSV genes were associated with cancer patients
with FCH (p < 0.05). HHIPL2, XPO1, SALRNA1, ZBTB45,
ANP32AP1, ACTR3BP5, LOC100129138, GPR45, and
CAB39L gene deletions were associated with non-cancer
subjects without FCH (p < 0.05), while RAB9BP1,
LOC101928523, and MALRD1 gene deletions were related

to non-cancer patients with FCH (p < 0.05). Consequently,
we inferred that subjects with FCH carrying SMYD3 or
NKD2 gene deletions may have a higher cancer incidence.
As illustrated in Fig. 4d, the volcano plot shows eight sig-
nificant DSV genes based on the Cox’s proportional haz-
ards model for survival analysis (Supplementary Table 6).

The clinical impact of immune gene expression-related
DSVs in colorectal cancer patients
The host immune system differentially participates in
the tumor microenvironment. Cancer often develops be-
cause of the immune system disturbance caused and
functional disorder. The germline DSVs influence aber-
rant gene expression in tumors [16]. Therefore, we stud-
ied the functions associated with 160 immune gene
expression-associated DSVs with correlation coefficients
of > 0.3, which were selected based on the point-biserial
correlation to understand the clinical impact of their de-
letions (Supplementary Table 1B). There are six categor-
ies of immune gene functions: housekeeping, checkpoint
pathways, cytokine signaling, lymphocyte markers,
lymphocyte regulation, and tumor characterization. A
total of 57 DSV genes were correlated with the six func-
tional immune response categories; the PTPRN2 gene

Fig. 4 DSV genes and survival analysis in cancer patients with or without family cancer history. a Table of the association between cancer and
FCH. The subjects who had FCH had a higher risk of developing cancer 1.89 [1.33–2.68] than the subjects without FCH (Fisher’s exact test p =
0.0003). The family cancer history is related to first- and second-degree relatives of patients with any cancer. b Fisher’s exact test and odds ratio
were applied to measure the relationship between each DSV gene and FCH. Forest plot of cancer patients with and without FCH. The DSV genes
are SMYD3 and NKD2 in cancer patients with FCH. The DSV genes are MGAT4C, HSPA4L, ZSCAN5A, LOC100505841, and NALCN in cancer patients
without FCH. c Forest plot of non-cancer subjects with and without FCH. The DSV genes are MALRD1, LOC101928523, and RAB9BP1 in non-cancer
subjects with FCH. There are nine DSV genes in non-cancer subjects without FCH. d Point plot of the log2 hazard ratio DSV genes and log10 (p
value). The size of the point indicates the frequency of the DSV gene in cancer subjects, and the red marks indicate the eight DSV genes with a p
value < 0.05. Blue points (MUC4 and CEP72 gene deletions) show the validated results
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deletion had the highest frequency (Fig. 5a and Supple-
mentary Table 7). STNG2 and LOC105376360 gene de-
letions (Fig. 5a) were related to lymphocyte regulation
and housekeeping (p-adjusted value less than 0.05),
while CEP72 and ZZEF1 gene deletions had high occur-
rences in the housekeeping and cytokine signaling cat-
egories, respectively (Fig. 5a).
We selected 65 prognosis-associated DSVs by using sur-

vival support vector machine (survival-SVM) [17], which
had the highest predicted score for survival-SVM. We
used 65 prognosis-associated DSVs among 160 immune-
associated DSV genes and constructed a heatmap (Fig. 5b
and Supplementary Table 1C). These prognosis-associated
DSVs were grouped into poor (33 recurrence-associated
DSVs) and better (32 non-recurrence-associated DSVs)
prognostic groups using Cox’s proportional hazards
model. There were more poor prognostic deletions in the

tumor characterization functional category (e.g., MUC4
and PTPRN2 gene deletions) and better prognostic dele-
tions in the lymphocyte regulation functional category
(Fig. 5b). We then stratified the patients into two groups
by prognostic deletions that have different clinical out-
comes. Group 1 (G1) was the patient who has more
recurrence-associated DSVs than non-recurrence-
associated DSVs. According to the Kaplan–Meier curve,
these patients in G1 experienced a poor clinical outcome
(p < 0.05) (Fig. 5c). Patients in group 2 (G2) had better
outcomes whose non-recurrence-associated DSVs are
more than recurrence-associated DSVs.

The biological relevance of germline DSVs and tumor
microenvironment immune genes
The tumor microenvironment can affect prognosis and
shape therapeutic resistance [18]. Overexpression of the

Fig. 5 The correlation of DSVs and immune gene expression and prognostic stratification. a Heatmap of 57 DSV genes related to six functional
immune expression categories. The ratio indicates the frequency of DSV genes related to immune expression. Only two DSV genes, STNG2 and
LOC105376360, have p-adjusted values < 0.05. b Heatmap of 65 immune-related DSV genes and clinical outcomes. There are six functional
immune categories: tumor characterization (green), lymphocyte regulation (purple), lymphocyte marker (orange), cytokine signaling (blue),
checkpoint pathways (brown), and housekeeping (light blue). The value shown is the point-biserial correlation coefficient in the heatmap. There
are poorer prognostic DSV genes correlated with the immune functional tumor characterization category and better prognostic DSV genes
related to the immune functional lymphocyte regulation category. c RFS by Kaplan–Meier survival plots. The patients were stratified into G1
(orange) and G2 groups (blue) by prognostic deletions that have different clinical outcomes. The G2 group had better clinical outcome than the
G1 group
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immune MAGEA1 gene, a member of the MAGEA gene
family, in tumor and stromal cells is associated with a
poor prognosis and an ideal candidate for tumor im-
munotherapy [19, 20]. MAGE1 was highly expressed in a
previous study on colorectal cancer [20]. In our data, we
showed that colorectal cancer patients with germline
MUC4 gene deletion experienced a poor clinical out-
come (Fig. 6a). Seven of 13 patients with a germline
MUC4 gene deletion experienced recurrence. Moreover,
the MUC4 gene deletion was positively correlated with
MAGE1 expression, which indicated that SV deletion re-
sulted in increased MAGE1 expression (Fig. 6a). With
the use of the STRING database [21], we also demon-
strated protein-protein interactions between the trans-
membrane mucin family, including MUC4 and MAGE1

(Fig. 6b). The functional protein association networks in-
dicated that the MUC4 gene deletion might influence
the expression of MAGE1.We hypothesized that germ-
line DSVs could affect immune MAGEA1 expression
and correlate with a poor prognosis.
Here, we also showed that eight prognostic DSVs can

affect RFS by expressing tumor microenvironment im-
mune genes. In our cohort, the eight prognostic dele-
tions were correlated with immune gene expression and
survival in colorectal cancer stage III patients (Supple-
mentary Fig. 5 and Supplementary Fig. 6). To under-
stand the cause-effect relationship of this result, we
applied causal modeling and implemented the PC algo-
rithm by R package CompareCausalNetworks [22]. The
PC algorithm uses conditional independence tests for

Fig. 6 Protein-protein interactions and the causal inference model. a Kaplan–Meier survival plot of the MUC4 gene DSVs. MUC4 (d−) indicates
that cancer patients have no MUC4 gene deletion. MUC4 (d+) indicates that cancer patients have the MUC4 gene deletion. RFS indicates
recurrence-free survival. The survival analysis showed that patients with MUC4 (d−) had a better clinical outcome (p = 0.027), and colorectal
cancer patients with the MUC4 gene deletion were associated with increased immune gene (MAGE1) expression. The right column shows the
MUC4 gene deletion and MAGEA1 expression correlation plot (r = 0.35). b The STRING database was used to show protein-protein interactions of
the transmembrane mucin family, including MUC1, MUC4, and MAGEA1. c Kaplan–Meier survival plot of CEP72 DSV. CEP72 (d−) indicates that
cancer patients have no CEP72 gene deletion. CEP72 (d+) indicates that cancer patients have a CEP72 gene deletion. RFS indicates recurrence-free
survival. The survival analysis showed that patients with CEP72 (d+) had a better clinical outcome (p = 0.012), and patients with the CEP72 gene
deletion were associated with decreased immune gene (IFIT1) expression. The left figure shows the CEP72 gene deletion and IFIT1 expression
correlation plot (r = 0.36). d Causal inference model of DSVs, immune gene expression, and RFS. Gray circles represent DSV genes, white circles
represent immune expression genes, and the black circle represents RFS. The arrow indicates the causal effect pair. The red arrow pair indicates
the RFS causal inference-associated pairs. The causal inference model showed that CEP72 could affect RFS by IFIT1
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model selection in graphical modeling with directed
acyclic graphs [23]. Our results showed that deletion of
the oncogene CEP72 could affect RFS by IFIT1 immune
expression. IFIT1 is an abundant product of interferon-
stimulating genes that correlates with a poor prognosis
in cancer [24].
In this study, we demonstrated the possible biological

relevance of the MUC4 gene deletion and MAGE1 ex-
pression and found the causal relationships among
CEP72 gene deletion, IFIT1, and RFS (Fig. 6d). MUC4 is
a transmembrane mucin family member, which is
expressed in airway epithelial cells and body fluids.
MUC4 plays an important role as a potential candidate
for diagnostic and treatment in cancer [25]. CEP72 is
the critical protein for the structural integrity of the
centrosome and maintaining microtubule-organizing ac-
tivity [26]. These results indicate that germline DSVs
might affect prognosis by expressing tumor microenvir-
onment immune genes.

Discussion
Advances in machine learning technologies have led to
the use of deep learning prediction models for cancer
prevention. Here, we applied WGS of germline DSVs for
predicting cancer risk and machine learning methods for
assessing immune-related prognosis. Our results
highlighted the following: (i) a cancer risk predictive
model was established with 671 DSVs and an attention-
weighted neural network, (ii) potential markers for
inherited cancer risk were identified in cancer patients
with or without FCH, (iii) 57 DSVs were correlated with
six immune functional categories, (iv) 65 prognostic de-
letions were identified in order to construct a survival
model for clinical outcome stratification, and (v) the
possible mechanisms and biological relevance of 2 germ-
line deletions in the expression of two immune genes
were presented. Germline WGS and immune gene ex-
pression profiling are excellent tools for predicting can-
cer and stratifying prognosis in colorectal cancer
patients.
Traditionally, a small subset of gene alteration features

that could predict and classify types of cancer were se-
lected by different machine learning models [27]. How-
ever, gene-gene interactions can significantly complicate
the search for disease-associated genes. Genes play vari-
ous essential roles in cancer biology, and each gene car-
ries a different weight importance in the clinical
outcome. Deep learning can employ an automatic weight
learning feature that can allow complex predictions. In
this study, we built a deep learning classification model
to identify unique biological features that can differenti-
ate between cancer and non-cancer subjects. Using
population-based designs, we identified 671 DSVs asso-
ciated with the risk of cancer. We found that PCA could

distinguish between cancer and non-cancer subjects
using these 671 DSVs.
We found that the deletion occur in the LHFPL3 gene,

which is relevant to colorectal cancer. The DSV located
at chromosome 7 starts with 104,473,711 end with 104,
474,263; the length of DSV was 552 bps. The study has
found that LHFPL3, the expression of miR-218-5p and
miR-138-5p, was downregulated, which correlates to a
reduction in cell activity, proliferation, and invasive hu-
man ability glioma cells [28]. The deletion in LHFPL3
leads to gene loss of function, which caused a worsening
prognosis in colorectal cancer patients. The DSV in
CBX3 is located at chromosome 7, and the region starts
with 26,241,421 ends with 26,245,980. The total length
of DSV was 4559 bps (Supplementary Table 1). The re-
sult indicated that the deletion in CBX3 was associated
with breast cancer. The Chromobox (CBX) family pro-
teins have epigenetic regulatory function and transcrip-
tionally repress target genes through chromatin
modification. The mRNA expression of CBX3 has been
found to affect the outcome of breast cancer in different
subtypes. CBX3 mRNA high expression was correlated
to worsening RFS for all breast cancer patients [29].
Many hereditary cancer syndromes have now been de-

fined and attributed to specific germline-inherited muta-
tions. Cancer development is related to accumulating
genetic alterations. In this study, we studied the evolu-
tion pattern of DSVs in cancer patients with or without
FCH. We found that subjects with FCH had a higher in-
cidence of developing cancer and may have initially
inherited three DSV genes, namely, MALRD1,
LOC101928523, and RAB9BP1. They developed cancer
after acquiring two DSV genes: NKD2 and SMYD3.
However, patients without FCH may have a different
evolution pattern of DSVs. Initially, they inherited nine
DSV genes—CAB39L, GPR45, LOC1001291138,
ACTR3BP5, ANP32AP1, ZBTB45, SALRNA1, XPO1, and
HHIPL2—and developed cancer after acquiring five DSV
genes—MGAT4A, HSPA4L, ZSCAN5A, LOC100505841,
and NALCN. We focused on eight signaling pathways
associated with the aforementioned DSV genes [30]. The
most significant pathway enriched with DSV genes for
subjects with FCH was metabolic regulation while for
subjects without FCH was transport regulation. These
results imply that subjects with or without FCH may de-
velop cancer through different signaling pathways. These
DSVs may become useful screening markers.
The result from each classification was the average

after five-fold cross validation. The 192 cancer pa-
tients and 499 non-cancer samples data were divided
into a training set and testing set. We randomly
chose 80% samples as the training data and 20% sam-
ples as the testing set in each fold. Because the DSV
analysis was started with BAM file and lack of
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samples, there was no other public data can be used
as validation data.
Genetic alterations from nature vs nurture: What deter-

mines cancer risk and prognosis? We hypothesized that
germline DSVs mold the tumor microenvironment and
immune gene expression, impacting the clinical outcome.
In this study, we wanted to examine the correlation of
germline deletions and immune response genes to under-
stand the potential mechanisms by which the tumor
microenvironment can affect clinical outcomes [31]. We
classified germline structural deletions by the expression
of tumor microenvironment-based immune response-
associated genes. There were significantly poorer prognos-
tic deletions in the tumor characterization category and
better prognostic deletions in the lymphocyte regulation
category. Eight prognostic deletions associated with im-
mune gene expression were identified, including HGF,
CDKN2A, and ITGB1. They were also reported as poor
prognostic factors in a previous study [32].
Beyond the traditional signaling factor statistical sur-

vival model, we used the survival-SVM and Cox’s pro-
portional hazards model to select 65 prognostic
deletions. We proposed a method to classify risk and
non-risk groups by prognostic deletions and identified
57 prognostic DSVs as possible markers for survival
stratification and prognosis assessment. From the bio-
informatics database and casual inference model, we also
demonstrated that immune-associated gene expression
may influence the clinical outcome of some germline de-
letions. The possible mechanism which affects tumor
microenvironment survival was shown, but further mo-
lecular validation is needed.

Conclusions
In conclusion, we used genomic data, including WGS
and immune gene expression data, and two explainable
machine learning models to establish cancer risk pre-
dictive models and a prognosis assessment tool that
could be useful for cancer prevention and potential
therapeutic strategies. Moreover, we need further func-
tional studies to know the biological information of the
DSV genes.

Materials and methods
Enrollment of cancer patients and non-cancer healthy
subjects
This is a hospital-based cohort study of cancer patients.
Eligible cancer patients were age ≥ 20 years with histo-
logically confirmed pathological stage II–III adenocar-
cinoma of colon or rectum, stage II–IV endometrial
cancer, I–IV epithelial ovarian cancer, or I–IV breast
cancer, an Eastern Cooperative Oncology Group per-
formance status (ECOG PS) of 0–1, and adequate organ
function. Patients are willing to provide blood samples

for research purposes and written informed consent. Ex-
clusion criteria were receiving chemotherapy within 6
months, other malignancies, and life expectancy less
than 1 year. Clinical information, including detailed can-
cer family history and blood sampling for WGS, health,
and lifestyle data of 499 non-cancer normal Taiwanese
people ages 30–70, were obtained from Taiwan Biobank.
A total of 192 cancer patients, including eight with

breast cancer, 120 with colorectal cancer, 29 with endo-
metrial cancer, and 35 with ovarian cancer, were re-
cruited for the study at the NCKUH between January
2015 and January 2017. Follow-up continued through
October 2018. Clinical information (detailed family can-
cer history (FCH)), tissue, and blood samples for DNA
extraction and WGS were collected at the time of enroll-
ment. The NCKUH institutional review board approved
this study (A-ER-103-395 and A-ER-104-153), and all
participants provided written informed consent. WGS,
health, and lifestyle data of 499 non-cancer Taiwanese
people were obtained from the Taiwan Biobank as refer-
ence (Fig. 1). Of all 99 CRC patients, the distribution of
gender was almost the same. The median age of these
patients was 58 years. The prevalent primary tumor site
was the left colon (80.8%). Family cancer history is re-
lated to first- and second-degree relatives of patients
with any cancer. Family cancer history and recurrence
were not significantly different. There was no signifi-
cant difference between recurrence and tumor charac-
teristics, such as tumor site, tumor invasion stage (T),
or nodal stage (N). In the genetic features of colorec-
tal cancers, there was no significant difference be-
tween recurrence and Mismatch Repair (MMR),
KRAS, and TP53 status. There were no significant in
clinic pathological differentiation and histology fea-
tures (Table 1).

Study design and workflow
To develop the risk and prognostic stratification model,
we collected genomic and clinical information, including
FCH, such as survival and FCH, from 192 cancer pa-
tients at National Cheng Kung University Hospital
(NCKUH) and 499 normal subjects without cancer in
the Taiwan Biobank [33] with four aims. First, we aimed
to build the cancer risk prediction model with germline
DSVs. Second, we studied the spectrum and frequency
of DSV genes in cancer patients with or without FCH.
Third, we aimed to observe whether genes with DSVs
would impact the tumor microenvironment’s immune
response gene expression. Fourth, we stratified the can-
cer patients’ clinical outcomes by immune-related DSVs
and investigated the DSVs’ relationship and biological
relevance. Figure 1 shows the overall workflow of this
study.
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Germline WGS
Genomic DNA from collected blood samples was quan-
tified with a Qubit fluorescence assay (Thermo Fisher
Scientific) and sheared with an S2 instrument (Covaris).
Library preparation was carried out using the TruSeq
DNA PCR-Free HT Kit (Illumina). Individual DNA li-
braries were measured with 2100 Bioanalyzer (Agilent)
qPCR and Qubit (Thermo Fisher Scientific). All flow
cells were sequenced on a HiSeq 2500 sequencer (Illu-
mina) using SBS kit V4 chemistry (Illumina). FastQC

was used to check read quality, and the resulting reads
were aligned to the hg19 reference genome with the
BWA-MEM algorithm [34]. The identification of SNPs
and indels and genotyping were performed across all
samples simultaneously using standard hard filtering pa-
rameters or variant quality score recalibration according
to GATK Best Practices recommendations [35].WGS
was performed with a minimum, median coverage of
30X.

Immune response gene expression data
Cancer tissues with immune response gene expression
profile data were obtained from 99 colorectal cancer pa-
tients. RNA was prepared from formalin-fixed paraffin-
embedded (FFPE) tissue that was extracted with the
RecoverAll Total Nucleic Acid Isolation Kit (Thermo
Fisher Scientific). RNA concentration was determined
on an Invitrogen™ Qubit™ Fluorometer with the Qubit™
RNA High Sensitivity Assay (Thermo Fisher Scientific).
Twenty nanograms of RNA was used for each reverse
transcription reaction, and cDNA was prepared with the
SuperScript™ IV VILO™ Master Mix Kit. Immune re-
sponse libraries were prepared using the Ion AmpliSeq™
Kit for Chef DL8 with the Ion Chef™ System and accord-
ing to instructions in the Oncomine™ Immune Response
Research Assay user guide (Pub. No. MAN0015867).
The raw gene expression data were preprocessed using
Torrent Suite (Thermo Fisher Scientific) and normalized
with the min-max feature scaling approach.

Statistical analysis
The chi-square test and Fisher’s exact test were used to
assess the differences between groups. Kaplan–Meier
curves were used to evaluate RFS, which was defined as
the time between surgery and cancer recurrence. A p
value < 0.05 was considered statistically significant.

Machine learning model and analysis
Detecting DSVs and data preprocessing
We detected germline DSVs in cancer and non-cancer
subjects simultaneously with PopDel from whole-
genome DNA sequencing data [10]. DSVs were then fil-
tered by the minor allele frequency (MAF). A MAF
greater than or equal to 0.05 and occurring in at least
1% of the sample in each population was subjected to
further analysis.

Selecting DSVs for the cancer risk and immune expression
correlation model
We designed an attention-weighted model [36] to select
important DSVs (Fig. 2a). This model is a MLP model
based on the attention mechanism. During the learning
process, the model automatically adjusts the weight of
every DSV. The main aim of this model is to predict

Table 1 99 CRC patients characteristic

Characteristic Recurrence
(N = 25)

Non-recurrence
(N = 74)

P value

Age 0.606

< 65 17 (68%) 55(74.3%)

≥ 65 8 (32%) 19(25.7%)

Gender 0.645

Male 11 (44%) 38 (51.4%)

Female 14 (56%) 36 (48.6%)

Tumor location 0.576

Left 21 (84%) 55 (74.3%)

Right 4 (16%) 17 (18.9%))

Differentiation 0.527

Well 3 (12%) 4 (5.4%)

Moderate 21 (84%) 66 (89.2%)

Poor 1 (4%) 4 (5.4%)

Adenocarcinoma 0.707

Mucinous 2 (8%) 10 (13.5%)

Nonmucinous 23 (92%) 64 (86.5%)

Tumor invasion stage 0.733

T1/T2 4 (16%) 9 (12.2%)

T3/T4 21 (84%) 65 (87.8%)

Tumor nodal stage 0.292

N0/N1 16 (64%) 57 (77%)

N2 9 (36%) 17 (23%)

Family cancer history > 0.99

Yes 11 (44%) 32 (43.2%)

No 14 (56%) 42 (56.8%)

Mismatch repair status 0.325

Proficient 25 (100%) 68 (91.9%)

Deficient 0 (0%) 6 (8.1%)

KRAS status 0.3245

Mutated 12 (48%) 25 (34.2%)

Wild 13 (52%) 48 (65.8%)

TP53 status > 0.99

Mutated 22 (88%) 64 (88%)

Wild 3 (12%) 9 (88%)
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subjects with or without cancer. We used the deletion
vector for each sample as the input of the attention-
weighted model and then adopted binary cross-entropy
as a loss function. After training the model, we obtained
the weight of each DSV. We then selected cancer risk-
associated DSVs with positive weights, which are im-
portant when classifying cancer and non-cancer samples.
We correlated cancer risk-associated DSVs and immune
gene expression data from 99 colorectal cancer patients.
The gene expression data were normalized. An immune
expression correlation table was established with the
point-biserial correlation [37], which was used to correl-
ate continuous variables with dichotomous variables, to
determine the relationship between DSVs and immune
gene expression.

Prognostic candidate genes and survival stratification
There are many survival analyses using the machine
learning approach to achieve predicted results, especially
survival-SVM [17] which can have better results. We
can also know the importance of each DSVs to the
model, and it can also be more interpretable. We se-
lected prognosis-associated candidate DSVs by using the
survival-SVM [17], which is the approach that can be
used to predict the event time duration based on a given
set of features. Therefore, we do feature selection base
on the survival-SVM, which can select the most predict-
ive prognosis associated with DSVs in the model. The
candidate DSVs were clustered into two groups: the
recurrence-associated DSV group and the non-
recurrence-associated DSV group. We measured the
hazard ratio (HR) of each candidate deletion using Cox’s
proportional hazards model, which represents the prob-
ability of recurrence by giving the survival time of pa-
tients. We determined that DSVs with a positive log
(hazard ratio) were recurrence-associated deletions,
while DSVs with a negative log were non-recurrence-
associated deletions. The prognostic DSVs were selected
with statistical significance in the hazard model. We
used the Kaplan–Meier method for the survival analysis
to compare the differences between the two survival
curves using the log-rank test [38].
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