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Abstract

Background: Modern applications such as bioinformatics collecting data in various ways can easily result in
heterogeneous data. Traditional variable selection methods assume samples are independent and identically
distributed, which however is not suitable for these applications. Some existing statistical models capable of taking
care of unwanted variation were developed for gene identification involving heterogeneous data, but they lack
model predictability and suffer from variable redundancy.

Results: By accounting for the unwanted heterogeneity effectively, our method have shown its superiority over
several state-of-the art methods, which is validated by the experimental results in both unsupervised and supervised
gene identification problems. Moreover, we also applied our method to a pan-cancer study where our method can
identify the most discriminative genes best distinguishing different cancer types.

Conclusions: This article provides an alternative gene identification method that can accounting for unwanted data

understanding tumorigenesis and tumor progression.

heterogeneity. It is a promising method to provide new insights into the complex cancer biology and clues for
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Background

Many variable selection methods have been proven to be
successful in handling high-dimensional data in the past
few decades. However, most of these methods assume the
data are independent and identically distributed (i.i.d.),
whose applications are severely limited. In most real-
world applications, we are quite often facing the hetero-
geneous data violating the assumptions [1]. For instance,
the gene expression data are usually found confounded
by “batch effects” in bioinformatics [2—4], which refers
to the systematic error generated while the samples are
probed by multiple batches of platforms [5-7]. In many
high-throughput biological experiments, technical noise
will significantly influence the subsequent data analyses
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[8]. Using technical replicate measurements is a com-
mon way to reduce the impact of technical noise on
gene expression analysis. However, technical replicates
or batch effects will definitely cause the data samples
have group structures, resulting in heterogeneous data for
which the traditional variable selection methods designed
for generic data are not suitable. These experimental or
technical factors are usually known and can be easily
adjusted. Nevertheless, gene expression data typically suf-
fer from other additional unknown factors that can induce
more complex data heterogeneity. It is not the truth that
all of these heterogeneous factors are unwanted in associ-
ation analysis or variable selection problems. Sometimes a
certain known/observed heterogeneous factor could be of
research interest and the others are unwanted. For exam-
ple, when one would like to know the variables that can
best describe the data grouping structure. In this case,
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only those heterogeneous factors except the grouping fac-
tor are unwanted. While in some other circumstances, the
heterogeneous factors are unwanted if none of them is
of interest. For example, some gene expression data are
confounded by batched effects and some other unknown
factors, and the corresponding gene identification prob-
lem is to seek those genes discriminative in the related
disease phenotype. In this case, the factor of research
interest is the disease phenotype and all the other het-
erogeneous factors confounding the gene expression data
are unwanted. Therefore, the specific problems and the
factors of interest determine whether the gene expres-
sion heterogeneity factors are wanted or unwanted in the
association analysis. In either case, if the unwanted het-
erogeneity is not taken into account, it would lead to
spurious results by directly applying conventional variable
selection methods to gene identification problems involv-
ing heterogeneous data. Moreover, it is even more chal-
lenging to adjust the unwanted heterogeneity if unknown
heterogeneity are involved.

Existing methods proposed for feature selection on het-
erogeneous data deal with those data generated from
multiple views or sources that describe the same set of
samples [9-12]. The corresponding data heterogeneity
generated from multiple views or sources are taken advan-
tage to improve the results learned from any single data
source. This is usually completed by formulating variable
selection problem as an multiple-task learning or inte-
grative learning problem. The variable selection strategies
in most of these methods are inspired by sparse learn-
ing based models [13, 14] or sparse principal component
analysis [15, 16]. However, this article studies different
problems in which the performance of variable selec-
tion is hurt by the data heterogeneity that should be
removed. Most previous related work addressing the het-
erogeneity issue focuses on adjusting the observed data
heterogeneity. However, the data analysis results in bioin-
formatics have proven to be significantly influenced by the
complex data heterogeneity arising from unknown het-
erogeneity factors [17, 18]. Rare attentions have been paid
to the adjustment of this kind of data heterogeneity. Sur-
rogate variable analysis (SVA) [17] have been proposed
by Leek and Store to adjust the unknown data hetero-
geneity for statistical analysis. This method lacks model
predictability and has the variable redundancy issue as
a filtering variable selection method [1]. Therefore, this
article proposes an effective embedded variable selec-
tion method that allows for model prediction from a
sparse learning perspective [19]. Our method is capa-
ble of adjusting the unwanted heterogeneity no matter
they are known or unknown. Moreover, it is also suitable
for both unsupervised and supervised variable selection
problems. We will study three different unsupervised and
supervised gene identification problems to investigate its
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performance based on either gene expression benchmark
data or real-world RNA-Seq gene expression data.

Methods

Data modelling

We denote the gene expression data by X, which contains
n samples and p variables. The group information caus-
ing the heterogeneity is represented by a binary indicator
matrix G € R"*¢ whose element G with value ‘1’ indi-
cates that the i-th sample belongs to the j-th group and
vice versa. In different kinds of variable selection prob-
lems, the group factor can play different roles contingent
on the corresponding interested factors. For instance, we
have the unsupervised variable selection problems aim-
ing to select the variables that can best determine the data
group structure. In this problem, our factor of interest is
G and we model X by:

X =Gn+e,

where € € N(0,02]) represents the i.i.d. noise and 5 €
R8*¢ reflects the group factor effect on each variable.
While in the supervised variable selection problems, addi-
tional observed variables denoted by Y are introduced and
affected by the variables of X. The factors of interest is ¥
here and the association between Y and the variables of X
is what we want to study. In this case, we model X by :

X=Yy+Gn+e,

in which y reflects the effect of Y on each variable.

In both types of the above problems, there may also
involves some other unaware factors causing unknown
heterogeneity sometimes. The unknown heterogeneity
refers to the variation patterns caused by the unknown
factors that are not explicitly included in the data model.
Let F = {F; : 1 < k < K} denote the K unknown fac-
tors. Certainly, they should be regarded as uninterested
factors and included in the data models. Thus, we correct
the model for unsupervised problems as:

X=Gn+F¢+e, (1)
and the model for supervised problems as:
X=Yy+Gn+F¢+e. (2)

Apparently, the analysis of true relations between the
factors of interest and each variable should take the
unwanted heterogeneity into account. In unsupervised
problems, the unwanted heterogeneity is caused by those
uninterested factors referring to F. While in supervised
problems, those uninterested factors refer to {G, F}.

Variable selection

Our variable selection strategy contains two main stages:
(1) adjust the unwanted heterogeneity and create a new
data set X,;. The effects of the factors of interest are thus
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represented by the variables of the new data set; (2) based
on the adjusted data set X, select the variables associated
with the factors of interest.

It is impossible to directly estimate the unknown factors
F for the first stage. We take the procedure similar to SVA
[17] to estimate the unknown factors. After removing the
effects from the uninterested factors, we obtain a new data
set whose variation is only determined by the factors of
interest. We show the detailed steps of the first stage as
below.

Stage 1: Creating a new adjusted data set X,.

1. Remove the effects from the known factors.
We first reformulate both model (1) and (2) in a general
form:

X =Nw+ F¢ +¢, (3)

where N dentotes the known factors which refer to
G for model (1) and {Y,G} for model (2). Let Ry
denote the column space of N. Correspondingly, let Ry
denote the residual operator of N that projects onto
the orthogonal complement of %y, which is denoted by
I — N(NTN)"INT. By multiplying Ry to both sides of
model (3), we have:

RnX = RNNw + RyFe¢p + Rye
= RNF¢ + Rye.

Through projecting X onto the orthogonal complement of
NRn, we can remove the effects from the known factors N.

2. Extract surrogate factors hy.

It is challenging to directly estimate F. In this step, we
estimate surrogate factors /(1 < k < K) instead to rep-
resent the residual heterogeneity Ry F¢. We can apply any
factor analysis method on Ry X to produce /. We con-
sider Singular Value Decomposition (SVD) here to remove
the arbitrary.

3. Estimate unknown factors Fy.

We estimate each surrogate factor /i based on the fol-
lowing steps:
1) select several variables of X most associated with /g;
2) conduct SVD on the set constructed by the selected
variables and return the eigenvectors ¢;(1 < j < n);
3) find j* = argmax; < <ncor(ey, hx) and set Fy = ej«.

4. Determine the uninterested factors U.

We set U to F for the unsupervised cases and to {G, F}
for the supervised cases.

S. Build a new adjusted data set X,,.

Both model (1) and (2) are represented by a general
form:

X=MB+Ua +e, (4)
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where M represents the factors of interest. It refers to G
for model (1) and Y for model (2) respectively. Then, we
assume that the true relations between the variables and
the factors of interest hide in an adjusted data set X,. By
removing the unwanted heterogeneity, we calculate X, as
X—-Ua.

Stage 2: Scoring variables

We employed an optimal scoring idea [20] to estimate
the true effects of variables to score the data variables
associated with the factors of interest M. We formu-
late the following variable selection problem with model
robustness:

1
in —||X,B — MO||% + ro(b
rg’gnll a Iz + Ap(b)

st. ©TMTMO =1, (5)

where ¢ sums over a vector of row norms (i.e, b =
L1b1ll2, - -, ||bp||2]T where bj(1 < j < p) denotes the
j-th row of the p x [ projection matrix B). The /5 norm
of the j-th row vector of B reflects the influence of the j-
th variable of X on M. The variable selection is allowed
based on the row norms of B with an appropriate choice
of .. We update all the unknown variables iteratively until
convergence to find the solutions of problem (5).

In the ¢ + 1-th iteration, we update ®*! given fixed B’
by solving the subproblem:

. 1 t 2
min —||X,B" — M®O||¢
® n

st. ©TMTMO =1.

1
We introduce a new variable ®’ to denote (M7 M)? © and
then solve the corresponding optimization problem with

_1
respect to ©’. By doing SVD of (MTM)™ > MTX,B!, we
obtain the optimal ®’.
Given ©f, we can update B by solving the subproblem:

1
min ~ || XoB — MO |2 + 1o (b).

Since the ¢ function is a non-decreasing and concave
function of the /; norm of row vectors of B, this is a reg-
ularized regression problem which can be solved by itera-
tive reweighted /; algorithm [21]. Despite the convergence
rate may be slow, the updating rules of this algorithm are
closed-form and simple. In detail, the iterative updates are:

BE) = WiXT (nl + XW'XT) ™' MY,

(1) _ ap(B) _ 1
j a1l 1B=BUTD T a)p

in which W = diag (wl_l, ceo w’1>. Since the influences

p
of the variables on the factors of interest are reflected by

the /3 norm of the corresponding row vectors of B, we
select variables by ranking all the variables in a decreasing
order based on them.
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In summary, the whole detailed procedure for variable
selection of our method is given by Algorithm 1. If it needs
r iterations to converge, the time complexity of this algo-
rithm is O(r(n?p + n®)). Usually, it takes a few iterations
to converge based on our experience. It is worth to note
that the algorithm is desirable for high-dimensional data
because it scales linearly in the number of variables. We
name our method as sparse optimal scoring with adjust-
ment (SOSA) considering we use a sparse optimal scoring
strategy to select variables based on the adjusted data.

Results
We studied three different unsupervised or super-
vised gene expression analysis problems to investigate

Algorithm 1 The algorithm for variable selection
accounting for unwanted heterogeneity.

Input: X € R"™*7: gene expression data; G € R"*$:
grouping indicator matrix; Y: additional observed phe-
notypes; K: the desired number of unknown hetero-
geneous factors; /: the desired dimension of projection
space; A: the tuning parameter for regularization; and
the initial values of B, ® and W.

/1 Stage I: remove unwanted data heterogeneity.
1. Set the known factors N to G or {Y, G} according to
the specific problem. Calculate Ry as I —N (N I'ny—INT
and set the left K eigenvectors of Ry X as {hy, ..., hx}.
fork=1:K,
select a few features of X most associated with
hy;
conduct SVD on the set constructed by those
features and return its eigenvectors ej(1 < j < n);
find j* = argmax;<j<,cor(e;, hy) and set Fx =
e]'*.
end
2. Set the unwanted heterogeneous factors U to F or
{G, F} according to the specific problem. The interested
factors are denoted as M correspondingly. Calculate
o = (UTRNU)YUTRNX and set X, = X — Ua.

/] Stage 1I: embedded feature selection on the adjusted
data.

3. Calculate Q = (MTM)~2MTX,B and the SVD of
Q = RDVT. Update ® by (MTM)~2RVT.

4. Update Bby WXT (anl + XWXT)~1M@.

5. Update the diagonal weight matrix W.

forj=1,...,p,
calculate the /; norm of b; as ||b;||>.
Wi = 2|1bj] 2.

end

6. Repeat 3-5 until convergence.
7. Return ¢, ® and B.
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the performance of our method. The first problem is
unsupervised and studied on spike-in gene expression
data, while the last two problems are supervised and stud-
ied on real-world gene expression data. The performance
in gene identification while taking care of unwanted het-
erogeneity is evaluated by comparing with state-of-the-art
methods for each problem.

Evaluation criteria

We evaluate and compare the gene identification per-
formance of all the methods based on the specificity
and sensitivity of the method’s ability to detect the dif-
ferentially expressed genes. Particularly, we consider the
number of true positives and false positives as well as the
receiver operating characteristic (ROC) curve. These cri-
teria are only suitable for the experiments in which the
true differentially expressed genes are known.

Given a top-N ranking list of the identified genes
obtained from a method, fitrue positives is the number
of true genes that appear in the top-N ranking list and
fifalse positives is the number of false genes that appear in
the top-N ranking list. Correspondingly, the true positive
rate and false positive rate are:

" fitrue positives
True positive rate = ——————,
fitrue genes
alse positives
False positive rate = ﬁfpi,
fifalse genes

where fitrue genes is the number of true genes which
are known truly associated with the factor of interest and
fifalse genes is the number of false genes which are known
falsely associated with the factor of interest. The receiver
operating characteristic (ROC) curve is plotted based on
the calculated true positive rate (sensitivity) and false pos-
itive rate (1-specificity). A method with the largest area
under curve (AUC) achieves both the highest sensitivity
and specificity.

Unsupervised differential gene expression analysis in a
spike-in study

This study attempts to find the genes that are differentially
expressed in different tissues based on the benchmark
data set from the spike-in experiment [22]. It belongs
to unsupervised differential gene expression analysis. In
this spike-in experiment, a series of 14 human cRNA
fragments were spiked-in at known concentration ratings
from 0 to 1024 pM, which are the spiked probe sets/genes.
For each of the 14 array groups, the cRNAs were spiked-
in at different concentrations. In each array group, there
were three replicates except that there are two array
groups having 12 replicates. The detailed arrangement of
concentrations of the 14 cRNAs for each group can be
found in [23]. In total, there are 59 arrays belonging to
14 array groups in the spike-in data. Each array contains
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12,626 probe sets and 14 of them are spiked-in. Since
Cope et al. found two more genes with similar patterns to
the spiked genes [22], our goal here is to detect those 16
genes differentiating the 14 array groups. In other words,
we want to discover those genes most representative of
the biological variation from different tissues and mean-
while most resilient to the technical noise hidden among
the technical replicates.

We compared three methods accounting for the het-
erogeneity or not. Robust Multi-array Average (RMA) is
the most popular method for gene expression analysis
but taking no heterogeneity into account. It summarizes
the replicate measurements to a gene expression value
[24], which however loses the technical variation informa-
tion hidden in the replicates. We ranked the genes based
on their average fold-change in RMA-summarized gene
expression values. Another two representative methods
taking care of the heterogeneity we considered here are
SVA and SOSA. SVA uses the estimated uninterested fac-
tors as covariates and conducts association analysis for
each individual gene. The genes are ranked in the increas-
ing order of their p-values. In contrast, our SOSA ranked
the genes based on the I, norm of their corresponding
row vectors of the estimated B. We then calculated the
respective true positives and false positives based on the
rankings of the three methods. The number of their true
positives appearing in the top 10, top 16, top 25 and
top 50 ranking lists are shown by Fig. la. The reason
we investigate the top 16 ranking list is that the num-
ber of the ground-truth genes is 16. We found that SOSA
always identified the most true positives in all the cases.
Fig. 1b further showed a more comprehensive investiga-
tion by ROC curves, in which our SOSA achieved the
highest sensitivity and specificity while RMA the lowest.
The superiority of our method is further validated. We
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select variables via choosing an appropriate A to force the
corresponding row-norms of B for most genes close to 0.
The choice of A was done by cross validation in which
we sequentially select one array out of each array group
to build the testing data and the rest to build training
data. The average objective values calculated for the test-
ing data using the corresponding estimated parameters at
20 different values of A are shown by Fig. 2a. We chose
the best X as 0.001 that corresponds to the smallest objec-
tive value. Usually, the range of the best A is expected
falling in [ 0.0005, 0.01]. Figure 2b showed the correspond-
ing top-100 ranking of genes based on their corresponding
row-norms of B. We found that the top-ranked 16 genes
matched the ground-truth exactly.

Supervised differential gene expression analysis in a
gender study

In this experiment, we study a supervised gene identifi-
cation problem which is first conducted by Vawter et al.
[25]. It tries to find those genes differentially expressed
in human brain with respect to the gender. In this prob-
lem, the samples are clearly clustered by laboratory and
chip type because they were sent to different laboratories
measured by one of these two types of chips. The inter-
ested effects related to the gender were blurred by these
strong batch effects and consequently the analysis results
will be significantly influenced. For this problem, our goal
is to find those genes that can best differentiate the sam-
ples from different genders. Moreover, these genes should
also be resilient to the unknown effects and the known
batch effects. The samples were taken post-mortem from
the brains of 10 individuals including 5 men and 5
women in this study. Specifically, for each individual, the
experiment takes three samples from different regions
of its brain. Each sample was sent to three laboratories
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for analysis based on either Affymetrix HG-U95Av2 or
Affymetrix HGU95A platform. Since there are 6 missing
chips in the 90 combinations, we have 84 collected chips in
total. The processed data set keeps the 12,600 probe sets
shared by the two platforms. RMA is used to measure the
gene expression values for the 84 chips.

We compared six representative methods: individ-
ual gene association analysis (IndAss), penalized logistic
regression (PLR), the standard sparse optimal scoring
(SOS), linear model adjusting batch effects (Lm_batch),
SVA and our SOSA, to identify those genes that can best
differentiate the samples from different genders. Their
sensitivity and specificity in gene selection were inves-
tigated. PLR, IndAss and SOS run directly on the gene
expression data without accounting for the unwanted
heterogeneity. The ‘glmnet’ package was employed to

implement PLR with the parameter chosen by cross vali-
dation. We ranked the genes based on the absolute values
of the regression coefficients in a decreasing order. Linear
model was also employed here to adjust the known batch
effects, which however is not able to adjust the unknown
heterogeneous factors. We also considered two alterna-
tive methods accounting for the heterogeneity: SVA and
our SOSA. We considered three unknown factors here.
By taking the lab/chip factor and the estimated unknown
factors as covariates, SVA did the association analysis for
each individual gene and then ranked the genes based
on their p-values in an increasing order. In contrast, our
SOSA ranked the genes based on the /5 norm of their cor-
responding row vectors of the estimated B. The parameter
A in SOSA was chosen by leave-one-out cross validation.
Figure 3a showed the plot of average objective values for
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the testing data at 10 different values of X falling in the
range between 0.0001 and 0.05. The best A was chosen as
0.004 which corresponds to the minimum average objec-
tive value across all the folds. We treat all the 488 genes
from the X and Y chromosomes as candidate positive
controls considering most genes differentially expressed
with respect to the gender will be located on the X and YV
chromosomes. For the negative controls, we use the 799
housekeeping genes claimed by [26]. The ROC curves for
all the six methods are shown by Fig. 3b, in which the
superiority of our SOSA is validated since it almost always
reached the highest sensitivity and specificity. Table 1
showed the number of true positives and false positives
in the top 20, 60, 80, 180 for each method. We observed
that those methods with adjustment can identify more
XY genes or less housekeeping genes than the unadjusted
ones, which demonstrates their significant improvement
on the gene selection performance. Benefiting from the
model stability accomplished by the regularization of the
gene coefficients, our SOSA achieved better performance
than SVA approach. We also observed that SOSA is supe-
rior to Lm_batch since it can adjust both the known
batch effects and the unknown heterogeneous factors.
For those methods without adjustment, SOS and IndAss
achieved higher sensitivity than PLR by correctly detect-
ing more X/Y genes, but IndAss has lower specificity since
it wrongly identified much more housekeeping genes than
the other two methods.

Supervised differential gene expression analysis in
pan-cancer study

The two studies above investigated the gene identifi-
cation performance of our method on heterogeneous
gene expression benchmark data with ground-truth genes
known. In this experiment, we explore the gene iden-
tification performance of our method as well as the
interpretation of those identified genes in the applica-
tion to a pan-cancer study. This experiment aims to
identify a set of genes differentially expressed across

Table 1 Comparison of the number of true positives and false
positives found for PLR, SOS, IndAss, Lm_batch, SVA and SOSA in
the gender study

Top 20 Top 60 Top 80 Top 180

™ FP TP FP TP FP TP FP
Unadjusted  PLR 31 4 2 4 2 7 7
SOS 9 0 15 4 17 4 25 8

IndAss 9 2 14 5 17 7 24 20

Adjusted Lm_batch 9 2 13 5 17 6 23 13

SVA 16 1 22 7 25 8 30 15

SOSA 16 1 24 4 26 5 32 13
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five common types of cancer that are clinically attrac-
tive as diagnostic biomarkers or therapeutic targets based
on The Cancer Genome Atlas (TCGA) gene expres-
sion data. Particularly, we use the publicly available
RNA-Seq (HiSeq) PANCAN data set from the UCI
machine learning repository (https://archive.ics.uci.edu/
ml/datasets/gene+expression+cancer+RNA-Seq#), which
is a random extraction of RNA-Seq gene expressions of
patients having five types of cancer: Breast (BRCA), Colon
(COAD), Kidney (KIRC), Lung (LUAD) and Prostate
(PRAD) from the TCGA data portal. This extracted and
preprocessed data set contains 801 patients with 20,531
genes measured in total. Among them, 300, 78, 146, 141
and 136 patients have BRCA, COAD, KIRC, LUAD and
PRAD respectively, which implies that the samples are
relatively balanced across different types of cancer.

To identify the set of genes that can best classify
these five types of tumor, we considered five methods
including three typical methods without accounting for
any unwanted heterogeneity: PLR, SOS, IndAss and two
methods that are able to adjust for the unwanted hetero-
geneity: SVA and SOSA. We separated the data samples
into training samples and testing samples by a 5-fold cross
validation. The differentially expressed genes were identi-
fied using these methods on the training data respectively.
Their utility was investigated by evaluating the corre-
sponding classification performance on the test samples
using them based on 1-NN classifier. The average clas-
sification testing error rates for each method using their
identified top 10, 30, 50, 100, 200, 300, 400 genes are
shown by Table 2. We also show the classification testing
error rate using all the genes on the test data as the base-
line. The different types of cancer can be well classified
with a 99.5% classification accuracy using all genes. The
utility of the respective top 30 genes identified by PLR,
SOS and SOSA are competitive to the baseline. As filter-
ing methods, IndAss and SVA identified pretty worse sets
of top N genes than the others for N less than 50 due
to lack of considering the combining effects of the iden-
tified genes. With N larger than 200 but not too large,
the top N genes identified by each of the methods can
lead to competitive or higher classification performance
than the baseline. Among these methods, our SOSA can
even achieve 99.9% classification accuracy with its top 100
identified genes. Overall, our SOSA can identify the most
discriminative genes comparing to other methods at each
fixed number of selected genes. And the superiority is
even higher as the number of selected genes goes small.

In addition to examination of the classification perfor-
mance of the identified genes, we care much more about
the interpretation of the role of these genes in distinguish-
ing the five cancer types as well as their involved biological
processes. Specifically, we found the union of the top 200
genes identified from each fold of the partitions. The final
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Table 2 Comparison of the average classification test error (%) in 5-fold cross-validation using different number of top genes selected
by: (1) a set of methods without adjustment for heterogeneity: PLR, SOS, IndAss; (2) another set of methods accounting for

heterogeneity: SVA and SOSA respectively in the Pan-Cancer study

T10 T30 T50 T100 T200 T300 T400
PLR 1.9 04 04 04 0.1 0.1 0.1
Unadjusted SOS 3.1 04 03 03 03 03 03
IndAss 4.5 1.5 1.8 0.1 03 0.1 0.1
) SVA 43 1.5 13 0.6 03 03 0.1
Adjusted
SOSA 1.1 0.5 0.3 0.1 0.1 0.1 0.1
Baseline Using all 20,531 genes 0.5

top 20 genes in the union set were: MAB21L1, HANDI,
SFTA2, SFTPA2, CDV3, NBL1, SFTA3, KLK1, HNF1A,
NKX1-2, NOV, KLK2, SFTPC, PQLC3, TCF20, NAPRT1,
POU3F2, CDH15, SCGB3A1 and GP9.

MAB21L1 belongs to the conserved male abnormal
gene family 21, which is described as a transcription
factor in cell fate determination [27]. Heart and neu-
ral crest derivatives expressed 1 (HANDI1) is a basic
helix-loop-helix transcription factor, and plays a very
important role in the development and differentiation of
heart and nervous system. As a developmental regula-
tor, HANDL1 is silenced in over 90% of human primary
colorectal tumors [28]. Four surfactant genes (SFTA2/3,
SFTPA2, and SFTPC) were identified in the top 20. They
were highly expressed in lung cancer and low in all
other tumors. CDV3 was documented as an unidenti-
fied gene in breast cancer [29], whose expression cor-
related to the expression of Her2 and the sensitivity of
photon-irradiation and simultaneous PTX-treatment in
breast cancer [30]. Three kallikrein genes (KLK1/2/3)
were identified in the top 30. The risk of prostate cancer
has been reported associated with single-nucleotide poly-
morphisms (SNPs) located in the genes coding for PSA
(KLK3) [31] and hK2 (KLK2) [32]. The classical cadherins
(CDHs) are a superfamily of transmembrane glycopro-
teins involved in calcium-dependent cell-cell adhesion in
embryonic development and epithelial tissues. CDHs are
also associated with signaling, mechanotransduction, can-
cer progression, and tissue morphogenesis, many of which
are related to cancer [33].

We also performed gene ontology (GO) analysis of
the top 200 genes using WebGestalt tool [34]. The top
10 highly enriched biological processes with GO terms
are listed in Table 3 and the corresponding topology is
shown by Fig. 4. Each gene ontology category is a node
in the graph. GO categories in blue nodes are the top 10
enriched GO categories while the others are their non-
enriched parent categories. It is clear that many of these
genes are involved in the biological processes of develop-
ment or morphogenesis of multicellular organism, organ,
embryo and tissue, which may provide some clues for

understanding tumorigenesis and tumor progression as
well as new insights into the complex cancer biology.

Discussion

The results from our experiments on three unsupervised
and supervised gene identification problems have shown
the superiority of our method in handling unwanted data
heterogeneity issue. The first problem studied a represen-
tative application of finding the differentially expressed
genes from gene expression data with batch effects in
unsupervised circumstance. Our method performs better
than RMA and SVA since it is capable of taking care of the
unwanted heterogeneity as well as variable redundancy.
The second problem studied a typical application of iden-
tifying differentially expressed genes from gene expression
data with batch effects in supervised circumstance. Our
method performs better in the sensitivity and specificity
in variable selection than other state-of-the-art meth-
ods including penalized logistic regression model, simple
statistical model for individual gene association analy-
sis, sophisticated statistical model capable of accounting
for data heterogeneity and linear model accounting for
batch effects. This benefit from our two-stage embedded

Table 3 Top 10 Enriched gene ontology (GO) terms for the most
discriminative 200 genes from the pan-cancer classification of all
801 samples having BRCA, COAD, KIRC, LUAD and PRAD

Gene Ontology (GO) terms P-value
Pattern specification process 2.6e-11
Regionalization 9.6e-11
Animal organ morphogenesis 1.6e-10
Tube development 1.1e-9
Urogenital system development 1.6e-8
Tissue morphogenesis 1.8e-8
Morphogenesis of a branching epithelium 2.2e-8
Anatomical structure formation involved in morphogenesis 2.5e-8
Embryonic morphogenesis 2.8e-8
Mesenchyme development 3.5e-8
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variable selection strategy. The third problem studied a
general case of supervised gene expression analysis where
the batch effects are unknown. Our method can achieve
the highest classification accuracy comparing to other
methods using the same number of discriminative genes.
In summary, our method has wide applications in various
kinds of gene identification problems.

Conclusions

We proposed sparse optimal scoring with adjust-
ment (SOSA) for gene identification on heterogeneous
data involving unwanted heterogeneity. Particularly, our
method is able to account for the unknown and unwanted
heterogeneity that blurs the true signals of genes. The
results from the first two studies on the batched gene
expression data demonstrate that those methods account-
ing for the unwanted heterogeneity can significantly
improve the gene identification performance. Moreover,
our method is also superior to the statistical models
capable of adjusting data heterogeneity because of the
model stability and the ability of prediction on new
samples. The results from pan-cancer study further val-
idated the superiority of our method in identifying the
genes discriminative in different cancer types to other

state-of-the-art methods. The biological interpretation of
the results provides new insights into complex cancer
biology and clues for understanding tumorigenesis. In
view of the commonly existing data heterogeneity issue
such as batch effects in bioinformatics, our SOSA can
also be adapted and serves as a promising tool to remove
the unwanted heterogeneity prior to downstream analy-
sis for many other biomedical applications such as cell
population diversity in single-cell landscapes and so on.
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