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Abstract

Background: The mechanism underlying chromosome rearrangement in nasopharyngeal carcinoma (NPC) remains
elusive. It is known that most of the aetiological factors of NPC trigger oxidative stress. Oxidative stress is a potent
apoptotic inducer. During apoptosis, chromatin cleavage and DNA fragmentation occur. However, cells may undergo
DNA repair and survive apoptosis. Non-homologous end joining (NHEJ) pathway has been known as the primary DNA
repair system in human cells. The NHEJ process may repair DNA ends without any homology, although region of
microhomology (a few nucleotides) is usually utilised by this DNA repair system. Cells that evade apoptosis via
erroneous DNA repair may carry chromosomal aberration. Apoptotic nuclease was found to be associated with
nuclear matrix during apoptosis. Matrix association region/scaffold attachment region (MAR/SAR) is the binding
site of the chromosomal DNA loop structure to the nuclear matrix. When apoptotic nuclease is associated with
nuclear matrix during apoptosis, it potentially cleaves at MAR/SAR. Cells that survive apoptosis via compromised
DNA repair may carry chromosome rearrangement contributing to NPC tumourigenesis. The Abelson murine
leukaemia (ABL) gene at 9q34 was targeted in this study as 9q34 is a common region of loss in NPC. This study
aimed to identify the chromosome breakages and/or rearrangements in the ABL gene in cells undergoing
oxidative stress-induced apoptosis.

Results: In the present study, in silico prediction of MAR/SAR was performed in the ABL gene. More than 80% of
the predicted MAR/SAR sites are closely associated with previously reported patient breakpoint cluster regions
(BCR). By using inverse polymerase chain reaction (IPCR), we demonstrated that hydrogen peroxide (H2O2)-induced
apoptosis in normal nasopharyngeal epithelial and NPC cells led to chromosomal breakages within the ABL BCR that
contains a MAR/SAR. Intriguingly, we detected two translocations in H2O2-treated cells. Region of microhomology was
found at the translocation junctions. This observation is consistent with the operation of microhomology-mediated NHEJ.

Conclusions: Our findings suggested that oxidative stress-induced apoptosis may participate in chromosome
rearrangements of NPC. A revised model for oxidative stress-induced apoptosis mediating chromosome rearrangement
in NPC is proposed.
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Background
Nasopharyngeal carcinoma (NPC) is a malignant neoplasm
derived from mucosal epithelium of the nasopharynx. Ac-
cording to the World Health Organization (WHO), NPC
can be classified into three subtypes according to the degree
of epithelial differentiation, namely keratinising squamous
cell carcinoma (Type I), non-keratinising squamous cell
carcinoma (Type II) and undifferentiated or poorly differen-
tiated carcinoma (Type III) [1].
NPC is a rare malignancy in most parts of the world;

the incidence rates are below one per 100,000 persons per
year [2, 3]. However, there are a few well-known notable
exceptions [3]. The intermediate rates were reported in
South-Eastern Asia, Northern Africa, the Middle East and
Arctic Region [3, 4]. The highest incidence rate was ob-
served among Southern Chinese living in central Guang-
dong province. The annual incidence rates for males and
females in central Guangdong province are 23.3 per
100,000 and 8.9 per 100,000, respectively [4]. The NPC in-
cidence rates are generally increasing from Northern
China to Southern China [3, 4]. In addition, an exception-
ally high incidence rate has been reported among the
Bidayuh people, the second biggest ethnic group in Sara-
wak, Malaysia. The age-adjusted rate of Sarawak residents
is 13.5 per 100,000 and 6.2 per 100,000 in males and fe-
males, respectively. Although the average rate in Sarawak
is intermediate, the incidence rate for Bidayuh people is
about 50% higher than that in Hong Kong (a part of the
Cantonese region of Guangdong province) [5].
NPC is strongly associated with Epstein-Barr Virus (EBV)

infection [6–8] as well as dietary [9–11], environmental
[12] and genetic factors [13, 14]. Several genetic aberrations
have been reported to be related to the development of
NPC, suggesting that NPC tumourigenesis involves mul-
tiple genetic changes. These include chromosomal gains or
losses [15–19], loss of heterozygosity (LOH) [20–23],
homozygous deletions [24–27], promoter hypermethylation
of tumour suppressor genes [28–31] and shortening of
chromosome telomeres [32, 33].
Although the consistent chromosome rearrangements

have long been identified in NPC, the molecular mech-
anism underlying the chromosome rearrangements of
NPC remains poorly understood. In addition to EBV in-
fection, long-term exposures to nitrosamines, formalde-
hyde, cigarette smoke and wood dust have all been
found to be associated with NPC [12, 34–36]. More re-
cently, much concern has been raised about the associ-
ation between chronic inflammation of sinonasal tract
and NPC [37, 38]. It is remarkable that all these
aetiological factors may trigger oxidative stress [39–43].
Oxidative stress is an imbalance of pro-oxidants and an-
tioxidants resulting in a disruption of redox signalling
and control. Pro-oxidants induce oxidative stress either
through excessive production of reactive oxygen species

(ROS) or inhibition of antioxidant systems [44]. ROS are
chemically-reactive molecules containing oxygen which
include peroxyl RO·, hydroxyl radical OH·, superoxide
O2·- and hydrogen peroxide H2O2 [45]. ROS cause
several kinds of DNA damages, including strand cleav-
age, base modification and DNA-protein cross-linkage
[45, 46]. Importantly, formaldehyde and acrolein, a
component of cigarette smoke, are reactive aldehydes. In
addition, reactive aldehydes may also be produced en-
dogenously during oxidative stress. Aldehydes may cause
adduct formation that impairs the function of DNA,
RNA and proteins via electrophile-nucleophile inter-
action. Exposure to environmental aldehydes has been
shown to be associated with the onset and development
of human diseases that involve oxidative stress. It has
been suggested that environmental and endogenous al-
dehydes may interact additively and exacerbate the cellu-
lar oxidative damage [47].
An evaluation of the levels of 8-hydroxy-2′-deoxyguanosine

(8-OHdG), a biomarker of oxidative DNA damage, had been
done among NPC patients. The tissue and serum levels of
8-OHdG in NPC patients have been found to be significantly
higher than those in control patients [48]. Oxidative stress
was suggested to play an important role in carcinogenesis
[49]. Since there is a strong link between the aetiological fac-
tors of NPC and oxidative stress, it is intriguing to investigate
the role of oxidative stress in the molecular mechanisms
underlying chromosome rearrangements of NPC.
Oxidative stress may induce apoptosis [50, 51]. H2O2

has been well known as an apoptotic inducer for various
human cell types, including osteoblasts [52, 53], sarcoma
cells [54], osteosarcoma cells [55], hepatoma cells [56],
astrocytoma cells [57], Jurkat T lymphocytes [58] and
Fanconi’s anaemia cells [59]. Apoptosis or programmed
cell death was first described by Kerr et al. (1972). Apop-
tosis is a type of genetically controlled cell suicide which
occurs naturally in multicellular organisms in order to
eliminate poisonous cells. Apoptosis is morphologically
characterised by condensation of chromatin, fragmenta-
tion of nuclei, compaction of cytoplasmic organelles, cell
shrinkage and cytoplasmic membrane blebbing [60–62].
Apoptosis is related to several biochemical events, in-
cluding externalisation of phosphatidylserine (PS) on cell
membrane, alteration in mitochondrial membrane po-
tential (MMP), release of cytochrome c (cyt c) from
mitochondria, caspase activation and internucleosomal
cleavage of DNA [63].
The alteration of nuclear chromatin during apoptosis

is often associated with fragmentation of the genomic
DNA into high-molecular-weight (HMW) DNA of 30 to
50 and 200 to 300 kbp [64, 65]. These sizes of fragments
have been suggested to be derived from the release of
loops (50 kbp) or rosettes (300 kbp) of chromatin, prob-
ably when they become detached from their binding
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sites on the nuclear scaffold [66]. Further degradation of
the HMW DNA produces the internucleosomal DNA
fragments of 180 to 200 bp [67, 68].
Cells undergoing apoptosis may recover from the exe-

cution phase of apoptosis upon DNA repair [69, 70].
There are two major double-strand breaks (DSBs) repair
pathways, namely homologous recombination (HR) and
non-homologous end joining (NHEJ) [71, 72]. Chromo-
somal DSB repair by HR is predominant during late S/
G2 phases of the cell cycle. NHEJ is the more frequently
used pathway that can repair a DSB at any time during
the cell cycle. These two pathways have different degree
of requirement for DNA homology. The HR pathway re-
quires sufficient homology, usually more than 100 bp.
Given that the HR DNA repair system ligates two DNA
ends with homologous sequences, it gives rise to precise
DNA repair. The NHEJ DNA repair system joins two
DNA ends without intensive requirement of sequence
homology. This pathway joins two DNA terminals with
microhomology of a few base pairs [71, 73, 74]. NHEJ
pathway has been shown to be prone to cause erroneous
repair of DSBs. This may in turn lead to chromosomal
aberrations [75]. It has been suggested that interaction of
the NHEJ DNA repair system with apoptosis can act as a
mechanism leading to translocation in leukaemia [70].
Chromosomal breakage takes place in the initial stage

of chromosome rearrangement and apoptotic DNA
fragmentation. It has been observed that chromosome
breaks do not randomly occur throughout a gene. Ra-
ther, chromosome breaks normally fall within certain re-
gions that contain specific chromatin structures, such as
matrix association region/scaffold attachment region
(MAR/SAR) [76, 77]. MAR/SAR are DNA sequences
where DNA loop structure attaches to nuclear scaffold/
matrix proteins [78]. There are two breakpoint cluster
regions (BCR) identified in the AF9 gene. These two
BCRs are bordered by two experimentally isolated
MAR/SARs [76]. The BCR of the mixed lineage leukae-
mia (MLL) gene has also been found to contain two
MAR/SAR sequences [78]. In addition, the most crucial
apoptotic nuclease CAD has been reported to associate
with the nuclear matrix of apoptotic cells [79].
We previously demonstrated that in normal nasopha-

ryngeal epithelial and NPC cells, oxidative stress-induced
apoptosis resulted in chromosome breaks in the AF9 gene
located on chromosome 9p22. We further demonstrated
that caspase-activated DNase (CAD) may be a major
player in mediating the oxidative stress-induced chromo-
somal cleavages. A few chromosome breaks were identi-
fied within the AF9 region that was previously reported to
participate in translocation in an acute lymphoblastic leu-
kaemia (ALL) patient. These findings suggested that oxi-
dative stress-induced apoptosis may play an important
role in mediating chromosome rearrangements in NPC

[80]. In the present study, we further investigated the
potential role of oxidative stress-induced apoptosis by tar-
geting the Abelson murine leukaemia viral oncogene
homologue 1 (ABL) gene located on chromosome 9q34.
This study targeted the ABL gene because 9q34 is a com-
mon region of loss in NPC [23].
The ABL gene is a proto-oncogene which encodes a

150 kDa nonreceptor protein tyrosine kinase. It was first
recognised as the cellular homologue of the v-abl onco-
gene product of the Abelson murine leukaemia virus
[81, 82]. The ABL protein has a complex structure that
contains many domains. These domains are found in
proteins which are involved in the formation of com-
plexes in signal transduction pathway. It has been dem-
onstrated that overexpression of ABL in fibroblast
resulted in growth arrest [83]. The product of ABL-BCR
fusion appears to be an abnormal kinase that stimulates
the proliferation of myeloid cells leading to chronic
myelogenous leukaemia (CML) [84]. The ABL gene is
173,795 bp in length and it consists of 11 exons [Ensem-
bl:ENSG00000097007]. The description of exons and
introns in the ABL gene is shown in Additional file 1.
By using MAR/SAR recognition signature (MRS), we

predicted 12 possible MAR/SAR sites in the ABL gene.
We demonstrated that oxidative stress-induced apop-
tosis resulted in chromosome breaks in the ABL BCR
which contains a MAR/SAR site. We detected shift
translocations in H2O2-treated normal nasopharyngeal
epithelial cells. Interestingly, we found region of micro-
homology at the breakpoint junctions. This observation
suggests a role for NHEJ DNA repair system in mediat-
ing the translocation. At last, we illustrated the possible
role of oxidative stress-induced apoptosis in mediating
chromosome rearrangements in NPC via NHEJ DNA re-
pair system.

Results
In silico prediction of MAR/SAR by using MAR/SAR
recognition signature (MRS)
Potential MAR/SAR sites in the ABL gene were pre-
dicted by using MRS. MRS is a bipartite sequence that is
strongly associated with MAR/SAR [85]. This bipartite
sequence consists of 16 bp nucleotide motif (AWWR-
TAANNWWGNNNC) within a distance of 200 bp of
the 8 bp nucleotide motif (AATAAYAA). However, for
our preliminary results in the ABL gene, we only found
one MRS (MAR/SAR 9 in Table 1) in the biochemically
identified SAR1 [77]. The distance between the 8 bp
sequence element and the 16 bp sequence element was
248 bp. Therefore, in this study, we set the maximal
distance between the two sequence elements at 250 bp.
By using MRS, we predicted 12 potential MAR/SAR sites

in the ABL gene. The nucleotide positions of the MRSs with
their sequence composition, relative orientation, distance
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between the two sequence elements and location of the
MRSs in the exon or intron of the ABL gene are shown in
Table 1. Out of the 12 predicted MAR/SAR sites, 9 were
identified in intron 1 which is the largest intron (approxi-
mately 140 kb in length) in the ABL gene (approximately
175 kb in length) (MAR/SAR 1–9 in Table 1). One potential
MAR/SAR site was separately found in intron 3 (MAR/SAR
10 in Table 1) and intron 10 (MAR/SAR 11 in Table 1). The
distribution of the predicted MAR/SAR sites in the ABL
gene is shown in Fig. 1. One MAR/SAR site (MAR/SAR 9

in Table 1) was predicted within the biochemically defined
SAR1 which is located in the second intron 1 [77].

Apoptosis detection
NP69 cells were either left untreated or treated with
100 μM of H2O2 for 16 and 24 h while HK1 cells were
either left untreated or treated with 50 μM for 4 and
8 h. Cells treated with CPT was included as a positive
control. The cells were then subjected to flow cytometric
analyses of PS externalisation and MMP loss.

Table 1 MAR/SAR predicted in the ABL gene

Predicted MAR/SAR AWWRTAANNWWGNNNC (16 bp) Nucleotide position AATAAYAA (8 bp) Nucleotide position Distance (bp) Location in exon/intron

1–1 ATTGTAACCATATCTC (C) 26,055–26,070 AATAATAA (C) 26,118–26,125 + 47 Intron 1

1–2 ATCATAACTTAGCAAC (C) 26,613–26,628 AATAACAA (W) 26,565–26,572 −40 Intron 1

2 AAAAAAATTTTGTACC (C) 29,601–29,616 AATAATAA (C) 29,629–29,636 + 12 Intron 1

3–1 ATAATAATTATACAAC (C) 80,698–80,713 AATAATAA (W) 80,726–80,733 + 12 Intron 1

AATATAAATAAAGTGC (W) 80,732–80,747 Overlap

3–2 ATTGTAACTAAGGTTC (C) 81,458–81,473 AATAACAA (C) 81,422–81,429 −28 Intron 1

4 ATAATAATAAAGAGAT (W) 99,259–99,274 AATAATAA (W) 99,261–99,268 Overlap Intron 1

AATATAATCAACTGAC (W) 99,447–99,462 − 178

5 ATAAAAAGGAAGATTC (W) 105,498–105,513 AATAATAA (C) 105,616–105,623 + 102 Intron 1

6 AAAAAAAAAAAGACTC (C) 108,315–108,330 AATAATAA (C) 108,484–108,491 + 153 Intron 1

AATAATAA (C) 108,487–108,494 + 156

AATAATAA (C) 108,490–108,497 + 159

7 AATGTAACAGAGAGCC (C) 117,122–117,137 AATAACAA (W) 117,343–117,350 + 205 Intron 1

8 AAAATAAACATATACC (W) 119,757–119,772 AATAATAA (W) 119,739–119,746 − 10 Intron 1

9 AAAGTAAAATTGAAAG (C) 133,546–133,561 AATAACAA (W) 133,810–133,817 + 248 Intron 1

10 ATTACAAGTTTGGTAC (C) 144,212–144,227 AATAATAA (C) 143,996–144,003 − 208 Intron 3

11 ATAAAAACAAAGAAGC (C) 163,018–163,033 AATAACAA (W) 163,048–163,055 + 14 Intron 7

12 AAAATAATAATGGCCA (W) 167,856–167,871 AATAATAA (W) 167,858–167,865 Overlap Intron 10

Nucleotide positions of the MRSs with their sequence composition, relative orientation (C, Crick strand and W, Watson strand), distance between the
two sequence elements and location of the MRSs in the exon or intron of the ABL gene are shown. A negative distance indicates that 8 bp sequence
element precedes the 16 bp sequence element

Fig. 1 Distribution of potential MAR/SAR sites predicted in the ABL gene. The ABL genomic map from nucleotide positions 601-174330 is
illustrated above [Ensembl:ENSG00000097007]. The locations of exons 1 to 11 are shown. Green boxes represent the three previously reported
patient breakpoints cluster regions which are designated as BCRA, BCRB and BCRC. Yellow box shows the previously biochemically extracted
MAR/SAR which is designated as SAR1 [77]. Yellow arrows represent the potential MAR/SARs predicted by MRS. Clusters of more than one MRS
within close proximity are regarded as a single potential MAR/SAR site. For instance, there were two MRSs predicted in BCRB, however, they were
regarded as a single potential MAR/SAR site (MAR/SAR 3) because they were found in close proximity. There was one MAR/SAR site (MAR/SAR 9)
predicted in the experimentally isolated SAR1
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Phosphatidylserine (PS) externalisation
As shown in Fig. 2a i, the percentages of apoptotic cells
detected in NP69 treated with 100 μM of H2O2 for 16
and 24 h were 2.82-fold (p = 0.000170) and 2.87-fold
(p = 3.4346E−8) higher than that detected in the un-
treated control, respectively. The percentages of apop-
totic cells detected in HK1 treated with 50 μM of
H2O2 for 4 and 8 h were 1.48-fold (p = 0.005735) and
1.92-fold (p = 0.000477) higher than that detected in
the untreated control, respectively (Fig. 2b i). Figure 2a
i and b ii are the representative dot plot diagrams
showing the apoptotic population of H2O2-treated
NP69 and HK1 cells, respectively.

Mitochondrial membrane potential (MMP) loss
As shown in Fig. 3a i, the percentages of apoptotic cells
detected in NP69 treated with 100 μM of H2O2 for 16 and
24 h were 2.45-fold (p = 0.006) and 2.25-fold (p = 0.002)
higher than that detected in the untreated control, re-
spectively. The percentages of apoptotic cells detected in

HK1 treated with 50 μM of H2O2 for 4 and 8 h were
1.68-fold (p = 0.009) and 2.18-fold (p = 0.007) higher
than that detected in the untreated control, respectively
(Fig. 3b i). Figure 3a ii and b ii are the representative
contour plot diagrams showing the apoptotic population
of H2O2-treated NP69 and HK1 cells, respectively.

IPCR detection of chromosome breaks within the ABL
gene mediated by stress-induced apoptosis
NP69 cells at confluency of 30–40% were treated with
10, 50 and 100 μM of H2O2 for 16 and 24 h while HK1
cells at optimal density were treated with 1, 10 or 50 μM
of H2O2 for 2, 4, 6 and 8 h. For each cell line, an un-
treated sample was included to serve as a cell control.
Nested IPCR was employed to identify chromosome
breaks mediated by stress-induced apoptosis. The IPCR
bands representing the ABL cleaved fragments detected
were isolated, purified and sequenced.
Figures 4 and 5 show the IPCR results for H2O2-treated

NP69 and HK1 cells, respectively. In the manipulation for

a ii

a i

b ii

b i

Fig. 2 Flow cytometric analysis of phosphatidylserine (PS) externalisation. NP69 cells were either left untreated or treated with 100 μM of H2O2

for 16 and 24 h while HK1 cells were either left untreated or treated with 50 μM for 4 and 8 h. Cells treated with CPT was included as a positive
control. The percentage of cells showing PS externalisation was determined in H2O2-treated NP69 cells (a i) and HK1 cells (b i). Means and SD of
three independent experiments performed in duplicate are shown. Data are expressed as fold change normalised to untreated control. *p < 0.01,
**p < 0.001 (Student’s t test). The representative dot plot diagrams indicating the apoptotic populations of (a ii) H2O2-treated NP69 cells and (b ii)
H2O2-treated HK1 cells are shown. The lower left quadrants indicate healthy cells; the lower right quadrants indicate cells in early apoptosis; the
upper right quadrants indicate cells in late apoptosis and necrosis
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nested IPCR, Age I (RE2 in Fig. 12) was used to linearise
the cyclised DNA. If there is no breakage within the ABL
gene, the IPCR product will be approximately 3 kb. On
the contrary, if there is any breakage within the ABL gene,
it should produce IPCR products which are smaller than
3 kb. As shown in Figures 4a and 5a, the ABL intact frag-
ment of 3 kb is present in all of the samples. This amplifi-
cation could serve as an internal control by proposing an
optimal IPCR condition for the ABL gene. Besides, nu-
merous IPCR bands of less than 3 kb were also obtained.
However, these bands are less intense as compared with
the intact fragment. This could be due to the competition
between the intact fragments and the cleaved fragments
for the amplification process. The intact fragments are
usually more abundant as compared with the cleaved frag-
ments. Consequently, the amplification of the cleaved
fragments would be less efficient in the presence of the
intact fragments. Therefore, double digestion with Age I
and BsaA I or Age I and EcoR I (RE3 in Fig. 12) was used
to eliminate competition from the intact fragments for the

nested IPCR reaction. These two different digestions gave
rise to the detection of chromosome breaks within differ-
ent regions. With double digestion of Age I and EcoR I,
numerous distinct IPCR bands of less than 3 kb which
represent the cleaved ABL fragment were detected in
H2O2-treated NP69 (Fig. 4b, lanes 4–9) and H2O2-treated
HK1 (Fig. 5b, lanes 4, 7, 9, 10, 11, 12 and 13) cells. A few
cleavage bands were detected in the untreated NP69 cells
(Fig. 4b, lane 1) which might be due to endogenous DNA
breaks in the minority of untreated cells which were un-
healthy. However, in general, there were more cleaved
fragments detected in the treated samples compared with
the untreated sample.
As shown in Fig. 4c, the intact fragment of 3 kb was

still detected upon double digestion with Age I and BsaA
I. Most probably, this was due to incomplete digestion
by Age I and BsaA I. Regardless of the incomplete diges-
tion, several cleavage bands of different sizes were de-
tected in NP69 cells treated with various concentrations
of H2O2 for different time points (Fig. 4c, lanes 4–9).

a i

a ii

b i

b ii

Fig. 3 Flow cytometric analysis of mitochondrial membrane potential (MMP) loss. NP69 cells were either left untreated or treated with 100 μM of
H2O2 for 16 and 24 h while HK1 cells were either left untreated or treated with 50 μM for 4 and 8 h. Cells treated with CPT was included as a
positive control. The percentage of cells showing MMP loss was determined in H2O2-treated NP69 cells (a i) and HK1 cells (b i). Means and SD of
two independent experiments performed in duplicate are shown. Data are expressed as fold change normalised to untreated control. *p < 0.01
(Student’s t test). The representative contour plot diagrams indicating the apoptotic populations of (a ii) H2O2-treated NP69 cells and (b ii) H2O2-
treated HK1 cells are shown. The upper quadrants indicate healthy cells whereas the lower quadrants indicate cells expressing MMP loss
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DNA breakages were detected in cell samples treated
with various concentrations of H2O2 at various time
points. Based on the microscopic analysis and flow cyto-
metric analyses, the optimal concentration and time
point were determined. These optimal concentration
and time point were used to repeat the experiments in
NP69 and HK1 cells. For NP69 cells, we selected con-
centration of 100 μM with exposure time of 16 and
24 h. The microscopic analysis on H2O2-treated NP69
cells showed that cytoplasmic shrinkage was only ob-
served in cells treated with 100 μM for 16 and 24 h
(Additional file 2). In addition, we performed flow cyto-
metric analyses of PS externalisation and MMP loss on
NP69 cells treated with 100 μM for 16 and 24 h. In these
two flow cytometric assays, both samples showed signifi-
cantly higher percentage of apoptosis as compared with
that of the untreated control (Figs. 2a i and 3a i).
For HK1 cells, we chose concentration of 50 μM with

exposure time of 8 h. Cell blebbing, which is one of the
major morphological changes, was relatively more prom-
inent in HK1 cells treated with 50 μM of H2O2 for 8 h
compared with those treated with lower concentration
(1 and 10 μM) and shorter exposure time (2, 4 and 6 h)
(Additional file 3). Moreover, the flow cytometric ana-
lysis of PS externalisation on sample treated with 50 μM
of H2O2 for 8 h showed a more promising result com-
pared with the sample treated with 50 μM of H2O2 for
4 h (Fig. 2b i).
H2O2 treatment was thus repeated in NP69 and HK1

cells with the selected concentration and time point.
NP69 cells at confluency of 30–40% were either un-
treated or treated with 100 μM of H2O2 for 16 h while
HK1 cells at confluency of 60–70% were either untreated
or treated with 50 μM of H2O2 for 8 h. The cells were
then harvested for gDNA extraction and nested IPCR.
In the manipulation for nested IPCR, all the samples
were subjected to double digestion with Age I and EcoR
I (RE3 in Fig. 12).
Fig. 6a shows that numerous IPCR bands of less than

3 kb which represent the cleaved ABL gene detected in
NP69 cells treated with H2O2 for 16 h (lanes 9, 10, 12
and 13) and 24 h (lanes 14–19). Three cleavage bands
were identified in the untreated control (lanes 2 and 5).
This might be due to spontaneous cell death of un-
treated cells as detected in our flow cytometric analyses.
As shown in the bar chart in Fig. 6b, the cleavage fre-
quencies of the ABL gene detected in NP69 cells treated
with H2O2 for 16 and 24 h are 1.4-fold (p = 0.004966)
and 1.8-fold (p = 0.000009) higher than that of the un-
treated control, respectively.
Similar findings were obtained from the H2O2 treatment

of HK1 cells. Figure 7a is a representative gel picture
showing the IPCR result obtained from this experiment.
The untreated HK1 cells show a few cleavage bands (lanes

a

b

c

Fig. 4 Nested IPCR detection of DNA breakages within the ABL gene
in H2O2-treated NP69. NP69 cells at 30–40% confluency were either
untreated (lane 3) or treated with 10 μM (lanes 4 and 7), 50 μM
(lanes 5 and 8) or 100 μM (lanes 6 and 9) of H2O2 for 16 h (lanes 4–6)
and 24 h (lanes 7–9). Genomic DNA was isolated and manipulated for
nested IPCR. In the manipulation for nested IPCR, the DNA samples
were subjected to digestion with Age I (a), double digestion with Age I
and EcoR I (b) or double digestion with Age I and BsaA I (c). The IPCR
products were analysed on 1% agarose gel. Side arrows in panels a
and c indicate the position of the 3 kb IPCR bands resulting from the
amplification of the intact ABL gene. Side brackets in panels a, b and c
indicate the possible IPCR bands from the ABL cleaved fragments.
Negative control for PCR was included (lane 10). This IPCR result is
representative of 2 repeats with similar results. M1: 1 kb DNA ladder.
M2: 100 bp DNA ladder
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2–7) which most likely due to spontaneous cell death. In
contrast, there were numerous cleavage bands identified
in the H2O2-treated sample (lanes 8–13). The chart
in Fig. 7b shows that the cleavage frequency of the ABL
gene detected in H2O2-treated HK1 cells is 1.7-fold higher
than that of untreated HK1 cells (p = 0.000197).

Sequencing results
In order to confirm that these fragments were derived
from the cleaved ABL gene, some of the cleavage IPCR
bands were extracted and sequenced. The sequencing
results show that they were all derived from the cleaved
ABL gene. Table 2 shows the breakpoints identified
within the ABL gene in the H2O2-treated cells. A map il-
lustrating the positions of chromosome breaks in HK1

and NP69 cells relative to the MAR/SAR sequences
within the ABL gene is shown in Fig. 8.
Intriguingly, we detected two shift translocations in

H2O2-treated NP69 cells. Translocation is rarely ob-
served in NPC, compared with deletion and addition.
The first shift translocation was identified in NP69 cells
exposed to 100 μM of H2O2 for 16 h. As shown in
Fig. 9a, the translocated segment was derived from the
human lipoma HMGIC fusion partner-like 3 (LHFPL3)
gene which is located on chromosome 7. The LHFPL3
gene consisting of three exons is 578,576 bp in length.
The description of exons and introns in the LHFPL3
gene is shown in Additional file 4. The translocated seg-
ment (228 bp) of the LHFPL3 gene is corresponding to co-
ordinates 108006–108234 [Ensembl:ENSG00000187416].
The breakpoints (108,006 and 108,234) of the LHFPL3

b

a

Fig. 5 Nested IPCR detection of DNA breakages within the ABL gene in H2O2-treated HK1. HK1 cells were seeded in 60-mm culture dishes and were
grown to optimal density (60–70% confluency). The cells were then either untreated (lane 3) or treated with 1 μM (lanes 4, 7, 10 and 13), 10 μM (lanes
5, 8, 11 and 14) or 50 μM (lanes 6, 9, 12 and 15) of H2O2 for 2 h (lanes 4–6), 4 h (lanes 7–9), 6 h (lanes 10–12) and 8 h (lanes 13–15). Genomic DNA was
isolated and manipulated for nested IPCR. In the modification for nested IPCR, the DNA samples were either subjected to digestion with Age I (a) or
double digestion with Age I and EcoR I (b). The IPCR products were analysed on 1% agarose gel. Side arrow in panel a indicates the position of the
3 kb IPCR bands resulting from the amplification of the intact ABL gene. Side brackets in both panels a and b indicate the possible IPCR bands from
the ABL cleaved fragments. Negative control for PCR was included (lane 16). This IPCR result is representative of 2 repeats with similar results. M1: 1 kb
DNA ladder. M2: 100 bp DNA ladder
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gene were mapped within its first intron. Moreover, region
of microhomology (TGCC) was found at the breakpoint
junctions. The second shift translocation was identified in
NP69 cells exposed to 10 μM of H2O2 for 24 h. The seg-
ment translocated to the ABL gene is derived from
chromosome 5. The disabled homologue 2 (DAB) gene is
1,263,556 bp at the 5′ end of this segment while a gene
encoding for hypothetical protein is 22,122 bp at the 3′
end (Fig. 9b).

Discussion
Oxidative stress increases genomic instability [86] which
in turn contributes to carcinogenesis [87, 88]. Excessive
production of ROS has been associated with mutation and
alteration of gene expression [49]. Most of the aetiological
factors of NPC were known to generate ROS. These

aetiological factors include exposures to nitrosamines,
cigarette smoke, formaldehyde and wood dust. EBV
infection as well as chronic inflammation of sinonasal
tract [39, 41–43].
In addition, formaldehyde and acrolein, a component

of cigarette smoke, are reactive aldehydes which may im-
pair the function of DNA, RNA and proteins through
adduct formation. It has been suggested that the com-
bined interactions of environmental aldehydes and
endogenous aldehydes, which are produced during
oxidative stress, may exacerbate the cellular oxidative
damage [47].
Although the consistent chromosomal aberrations, such

as deletion and addition, have long been identified in
NPC, the underlying molecular mechanism requires fur-
ther investigation. Apoptosis was suggested to participate

b

a

Fig. 6 IPCR analysis of H2O2-induced chromosome breaks within the ABL gene in NP69 cells. a IPCR result obtained from H2O2-treated NP69 cells. NP69
cells were either untreated (lanes 2–7) or treated with 100 μM of H2O2 for 16 h (lanes 8–13) and 24 h (lanes 14–19). Genomic DNA was isolated and
manipulated for nested IPCR. Double digestion with Age I and EcoR I was employed to eliminate competition of the intact fragments in the amplification
process. Each cell sample consisted of six replicates (R1–6) in the nested IPCR. The IPCR products were analysed on 1.0% agarose gel. Side bracket indicates
the possible IPCR bands derived from the ABL cleaved chromosome. Negative control for PCR was included (Lane 20). M: 100 bp DNA ladder. b The
average number of DNA cleavage detected within the ABL gene. The data was expressed as means and SD of three independent experiments. Each
experiment consisted of 1–3 sets of IPCR. Each set of IPCR was performed in 4–7 IPCR replicates for each cell sample. *p< 0.01, **p< 0.001 (Student’s t test)
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in the chromosomal translocation process of leukaemia
[70]. Given that there is a strong association between the
aetiological factors of NPC and oxidative stress, we
intended to investigate the role of oxidative stress-induced
apoptosis in mediating the chromosome rearrangements
of NPC.
We demonstrated that hydrogen peroxide (H2O2), a

strong oxidising agent, was able to induce apoptosis in
normal nasopharyngeal epithelial cells (NP69) and NPC
cells (HK1). Both exposure of PS and disruption of
MMP are key events of apoptosis [89, 90]. By using flow
cytometric analyses of PS externalisation and MMP loss,
we detected significantly higher percentages of apoptosis
in H2O2-treated NP69 and HK1 cells as compared with

the untreated controls. As compared with NPC cells
(HK1), longer exposure time and higher dosage of H2O2

were needed to trigger apoptosis in normal nasopharyn-
geal epithelial cells (NP69). There may be several possi-
bilities that lead to this variation. The intrachromosomal
instability in cancer cells is usually higher than that in
normal cells [91, 92]. Furthermore, cancer cells may have
a defective DNA repair system which is unable to restore
the genomic integrity [91]. These factors imply that cancer
cells are more susceptible to DNA damage. When apop-
tosis is triggered by oxidative stress, DNA fragmentation
occurs. Cells try to survive apoptosis through DNA repair.
Therefore, as compared with normal cells, cancer cells
which have a higher intrachromosomal instability or a

b

a

Fig. 7 IPCR analysis of H2O2-induced chromosome breaks within the ABL gene in HK1 cells. a IPCR result obtained from H2O2-treated HK1 cells.
HK1 cells were either untreated (lanes 2–7) or treated with 50 μM of H2O2 for 8 h (lanes 8–13). Genomic DNA was isolated and manipulated for
nested IPCR. In the manipulation for nested IPCR, samples were subjected to double digestion with Age I and EcoR I to eliminate the competition
of the intact fragments for amplification process. Each cell sample consisted of six replicates in nested IPCR. The IPCR products were analysed on
1.0% agarose gel. Side bracket indicates the possible IPCR bands derived from the ABL cleaved chromosome. Negative control for PCR was
included (lane 14). M: 100 bp DNA ladder. b The average number of DNA cleavage detected within the ABL gene. The data was expressed as
means and SD of three independent experiments. Each experiment consisted of 1–3 sets of IPCR. Each set of IPCR was performed in 6 IPCR
replicates for each cell sample. *Pp< 0.001 (Student’s t test)
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defective DNA repair system are usually more vulnerable
to apoptosis.
In our previous report, we identified chromosomal

breakages within the AF9 gene in H2O2-treated NP69
and HK1 cells. In addition, inhibiting caspase-3 by
caspase-3 inhibitor has abolished the AF9 gene cleavages
mediated by H2O2-induced apoptosis. Given that
caspase-3 is the main activator of CAD-mediated DNA
fragmentation in apoptosis, our findings suggested that
CAD might be the major player which mediated the
chromosomal breakages in H2O2-induced apoptosis [80].
It has been observed that CAD binds to the nuclear
matrix during apoptosis [79]. Due to the fact that MAR/
SAR sequences are the sites where DNA interacts with
the nuclear matrix [93], it is likely that CAD cleaves the
DNA at MAR/SAR sequences when it associates with

nuclear matrix. Intriguingly, our previous report demon-
strated that oxidative stress-induced apoptosis caused
chromosomal breakages within the AF9 BCR which is
bordered by two MAR/SARs [80].
The present study targeted the ABL gene which is

located on chromosome 9q34. This gene was targeted
because 9q33-34 is one of the common deletion regions
in NPC [23]. The ABL gene is the most common fusion
partner gene with the breakpoint cluster region (BCR)
gene which is located on chromosome 22q11 [94]. The
reciprocal translocation t(9;22)(q34;q11) in CML was the
first consistent chromosome rearrangement found in
malignancy. The ABL-BCR fusion gene was named as the
Philadelphia chromosome [95]. This reciprocal transloca-
tion was found in approximately 92% of CML patients.
Thus, the ABL-BCR fusion gene is recognised as the cyto-
genetic hallmark of patients suffering from this disease
[94, 96]. The presence of Philadelphia chromosome was
also reported in 20 to 55% of adults and 2 to 10% of chil-
dren with acute lymphoblastic leukaemia (ALL) [97] and
rarely (1 to 2%) in acute non-lymphoblastic leukaemia
(ANLL) [98]. There are three BCRs found within the ABL
gene. The first BCR (BCRA) and the second BCR (BCRB)
are located in intron 1b, whereas the third BCR (BCRC)
spans through parts of introns 1b to 3. BCRC is the largest
BCR of the ABL gene [77, 99].
One biochemically defined MAR/SAR has been previ-

ously identified within the BCRC of the ABL gene. This
MAR/SAR was designated as SAR1. SAR1 was found
within intron 1a [72]. In the present study, we predicted
MAR/SAR sites within the ABL gene by using MRS
which was proposed to be strongly associated with
MAR/SAR [84]. It has been found that the two sequence
elements of the MRS exist at a position near the dyad
axis of the nucleosome. The wrapping of the DNA
around the histone protein complex causes the two se-
quence elements of the MRS to be physically close to-
gether even if they are non-adjacent on the linear DNA.
The close proximity between the two sequence elements
of the MRS on the positioned nucleosome allows them
to generate a protein-binding site in MAR/SAR [84].
The variation in the distance between the two se-

quence elements suggested a relation of the MRS to nu-
cleosome organisation. In the Drosophila histone cluster,
there was a MAR/SAR identified between the histone
H1 and H3 genes. This MAR/SAR was found to contain
a few nucleosomes and two MRSs. It was observed that
the position of the two MRSs on their respective nucleo-
somes is similar. The first MRS, where the two sequence
elements are overlapping, is found on the dyad axis of a
nucleosome. The second MRS, where the two sequence
elements are 145 bp apart, is located near the entry and
exit sites of a nucleosome. Although the two sequence
elements of the MRS are spatially distant, they are

Table 2 The chromosome breaks identified within the ABL gene
in cells treated with H2O2

Cell line treated with H2O2 Breakpoint

NP69 129,265

129,287

129,372

129,408

129,520

129,534

129,628

129,823

130,633

130,634

130,638

130,687

130,699

130,719

130,822

130,864

131,108

131,232

HK1 129,152

129,461

129,739

130,653

130,696

130,791

130,854

130,921

131,042

The nucleotide positions of the chromosome breaks identified within the ABL
gene were mapped according to the ABL sequence retrieved from Ensembl
database [Ensembl:ENSG00000097007]
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brought close together when the DNA is turned around
the histone core [85].
A nucleosome comprises a nucleosome core and a

‘linker’ DNA. The nucleosome core contains 145–147 bp
of DNA wrapped around a core histone octamer. The his-
tone octamer consists of two molecules each of the four
core histones, namely, H2A, H2B, H3 and H4 [94]. It has
been known that the length of ‘linker’ DNA ranges from
15 to 100 bp, depending on the cell types. The ‘linker’
DNA connects one nucleosome to the other (reviewed in
[95]). The nucleosome repeat length (NRL) refers to the
length of nucleosomal DNA (145–147 bp) plus the length
of linker DNA (15–100 bp) [94, 95]. Using the micrococ-
cal nuclease assay, the NRL has been reported to range
from 160 to 240 bp [96, 97].
In the studies by van Drunen et al. (1999), the distance

between the two sequence elements of the MRS has
been suggested to be within 200 bp [85]. SAR predic-
tion/SAR prediction presently performed in the ABL
gene, there was only one MAR/SAR site (MAR/SAR 9 in
Table 1) predicted in the experimentally isolated SAR1.
The distance between the 8 bp sequence element and
the 16 bp sequence element was found to be 248 bp.

Given that the NRL may exceed 200 bp, for the mapping
of MRS in the present study, the maximal distance be-
tween the 8 bp sequence element and the 16 bp se-
quence element was set at 250 bp. Besides, it is also
possible that the two sequence elements, which are
248 bp apart, are located separately on two adjacent
nucleosomes. In the positioned nucleosomes, interaction
between two adjacent nucleosomes may happen. Thus, it
seems possible that even if the two sequence elements
are individually located on two adjacent nucleosomes,
the wrapping of DNA around the histone protein com-
plex may still cause them to be physically close together
and enable them to generate a protein binding site.
We predicted 12 potential MAR/SAR sites within the

ABL gene. One MAR/SAR site was predicted within the
biochemically defined SAR1. Interestingly, 10 out of
these 12 (> 80%) potential MAR/SAR sites are closely as-
sociated with the BCRs of the ABL gene (Fig. 1). MAR/
SARs 1 and 2 were predicted next to BCRA. MAR/SAR
3 was found within BCRB. MAR/SARs 4 to 10 were
identified within BCRC.
By using IPCR, we identified chromosome breaks in

H2O2-treated NP69 and HK1 cells. The cleavage frequency

a

b

Fig. 8 A map representing the positions of H2O2-induced chromosome breaks within the ABL gene. a The ABL genomic map from nucleotide
positions 601-174330 is illustrated above [Ensembl:ENSG00000097007]. The locations of exons 1–11 are shown. The green boxes indicate the
three previously identified patient breakpoints cluster regions which are designated as BCRA, BCRB and BCRC. The yellow box shows the
previously biochemically extracted MAR/SAR which is indicated as SAR1 [77]. The yellow arrows represent the potential MAR/SARs predicted by
MRS in this study. b The region of study (3.7 kb). Xba I (X), BsaA I (B), Age I (A) and EcoR I (E) restriction sites are shown. The green and blue
arrows represent the primers used in the first and second rounds of nested IPCR, respectively. The breakpoints identified in H2O2-treated HK1 and
NP69 cells are indicated by the green and red vertical lines, respectively. All chromosome breaks were mapped within SAR1
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of the ABL gene in H2O2-treated cells was significantly
higher than that in the untreated control cells. This is true
for both NP69 and HK1 cell lines. These results reaffirm
our previous findings which demonstrated that oxidative
stress-induced apoptosis resulted in chromosomal break-
ages in normal nasopharyngeal epithelial and NPC cells
[80]. Taken together, our findings are consistent with other
studies which discovered that H2O2 induced apoptotic
DNA fragmentation. It has been demonstrated that H2O2

induced excision of chromosomal DNA loops mediated by
topoisomerase II in U937 leukaemic cells [100]. The pro-
duction of these HMW DNA fragments (50–100 kb
loop-sized DNA fragments) is an initial event of apoptosis

[65]. It has also shown that in caspase-3-expressing MCF-7
breast carcinoma cells, H2O2 activated DNA fragmentation
with nucleosomal intervals [101]. The fragmentation of nu-
clear DNA into nucleosomal DNA ladders is another hall-
mark of apoptosis [102].
Our sequencing results have confirmed that the IPCR

bands were derived from the cleaved ABL gene. All of
the breakpoints were mapped within the biochemically
defined SAR1 of the ABL gene. SAR1 is located in
BCRC, the largest BCR of the ABL gene [77]. MAR/SAR
is thought to be one of the common chromatin struc-
tures within BCRs. The BCRs of AF9, MLL and AF4
genes have all been found to associate with MAR/SAR,

b

a

Fig. 9 Shift translocations detected in H2O2-treated NP69 cells. a Treatment of NP69 with 100 μM of H2O2 for 16 h resulted in shift translocation. The
DNA sequences 1–184 and 413–998 (without the box) represent the sequence derived from the ABL gene. The DNA sequence 185–412 (within the
box) represents the sequence derived from the LHFPL3 gene which locates at chromosome 7. Region of microhomology (185–188, TGCC) was found
at the breakpoint junctions. The translocated fragment (228 bp) of LHFPL3 gene is corresponding to coordinates 108,006–108,234
[Ensembl:ENSG00000187416]. b Treatment of NP69 with 10 μM of H2O2 for 24 h resulted in shift translocation. The DNA sequences 1–524 and 672–
742 (without the box) represent the sequence derived from the ABL gene. The DNA sequence 525–671 (within the box) represents the sequence of
the fragment translocated to the ABL gene. This translocated fragment (147 bp) is derived from chromosome 5. The disabled homologue 2 (DAB)
gene is 1,263,556 bp at the 5′ end of this translocated fragment while a gene encoding for a hypothetical protein is 22,122 bp at the 3′ end
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suggesting a role for MAR/SAR in non-homologous
recombination (NHR) [76–78]. MAR/SAR sequences
were found to possess DNA unwinding properties [103,
104]. These properties allow them to facilitate the entry
of protein factors that take part in chromosome conden-
sation, apoptosis, transcription and replication [104,
105]. However, these unwinding properties also cause
MAR/SAR sequences to be more prone to DNA break-
age [103, 104].
In addition, two shift translocations were detected in

H2O2-treated NP69 cells. One of the translocated seg-
ments was derived from the LHFPL3 gene which locates
at chromosome 7.
The other translocated segment was derived from

chromosome 5. The disabled homologue 2 (DAB) gene
is 1,263,556 bp at the 5′ end of this translocated seg-
ment while a gene encoding for hypothetical protein is
22,122 bp at the 3′ end.
The LHFPL3 gene is one of the family members of

LHFP-like genes. This gene family consists of six family
members. All of the family members have been impli-
cated in human diseases. Members of this family are
transmembrane proteins which play important roles in
extracellular matrix formation, differentiation and prolif-
eration. Most of them have been associated with tu-
mours [106]. The first member, LHFP on chromosome
13q12, was identified, for the first time, as a transloca-
tion partner of HMGIC gene on chromosome 12q15 in
human lipoma with t(12;13)(q15;q12). Thus, it was an-
notated as lipoma HMGIC fusion partner (LHFP) gene
[107]. The LHFPL1 gene on chromosome Xq23 has been
implicated in liver tumour [108]. The LHFPL2 gene on
chromosome 5q14.1 was found to be highly expressed in

the novel subgroup of ALL [109, 110] and in patients
who succumbed fatally to serous epithelial ovarian can-
cers (SEOC) [111]. The LHFPL4 gene at 3p25.3 was
identified as a novel methylation target specific for cer-
vical cancer [112]. Mutation in the LHFPL5 gene (on
chromosome 6p21.31) which is also known as tetraspan
membrane protein of hair cell stereocilia (TMHS) gene
has been found to cause autosomal recessive nonsyn-
dromic deafness [113].
The LHFPL3 gene is located on chromosome 7q22.1.

Deletions involving chromosome 7q22 are commonly
observed in uterine leiomyoma (UL). Four distinct dele-
tion intervals have been identified. One of the microde-
letions contains the LHFPL3 gene. The single deleted
marker in the microdeletion was mapped within the first
intron of the LHFPL3 gene. These findings suggested
that the LHFPL3 gene is a candidate tumour suppressor
gene (TSG) for UL [106]. Deletion of 7q22 has also been
associated with leukaemia. A commonly deleted segment
of chromosome 7q22 has been identified in patients with
a malignant myeloid disease. The LHFPL3 gene is one of
the candidate TSGs residing in this deletion interval
[114]. More recently, the alteration of LHFPL3 gene has
been suggested to be a hallmark of primary glioblastoma
[115].
Intriguingly, region of microhomology (four nucleo-

tides) was found at the breakpoint junctions. This obser-
vation suggested that the shift translocation of the
LHFPL3 gene might be mediated by NHEJ DNA repair
pathway. Based on the analysis of our sequencing data,
we illustrated the potential model for the shift transloca-
tion of the LHFPL3 gene (Fig. 10). As proposed by Betti
and colleagues (2001), the interaction of the NHEJ DNA

Fig. 10 A potential model for the shift translocation of the LHFPL3 gene. During oxidative stress-induced apoptosis, chromosomal breakages
occur within both the LHFPL3 (located at chromosome 7q22) and ABL (located at chromosome 9q34) genes. Following that, interstitial deletion
occurs within the LHFPL3 gene. When the cells try to survive apoptosis, DNA repair takes place. By utilising the region of microhomology, TGCC,
that was found at the breakpoint junctions of both the LHFPL3 and ABL genes, the two DNA ends were joined. Subsequently, cells that survive
apoptosis may carry the ABL gene with the shift translocation of a segment of the LHFPL3 gene
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repair pathway with apoptosis can act as a mechanism
leading to translocation in leukaemia. They found that
translocation junctions between the MLL gene and the
partner DNA contain regions of microhomology consist-
ent with the operation of NHEJ repair process [70]. In
addition, it has been found that cells that survive apop-
tosis may contain rearranged chromosomes that contrib-
ute to leukaemogenesis [69]. Taken together, the findings
of ours and of others support the notion that the inter-
action of the NHEJ DNA repair system with oxidative
stress-induced apoptosis may be a possible mechanism
leading to chromosome rearrangements in NPC.
We previously proposed a potential model for oxida-

tive stress-induced chromosome rearrangements in NPC
involving the AF9 gene [80]. Based on the findings of
the ABL gene in the present study and additional find-
ings from the literature, we proposed a revised model
(Fig. 11). The revision of this model enables us to further
elucidate the potential role of oxidative stress-induced
apoptosis in mediating chromosome rearrangements in
NPC. We propose that oxidative stress plays an essential
role in NPC aetiological factors. These include exposure
to nitrosamine, wood dust, formaldehyde and cigarette
smoke. EBV infection as well as chronic inflammation of
sinonasal tract. Oxidative stress-induced apoptosis is ini-
tiated by apoptotic signalling. This includes PS external-
isation and MMP loss. The apoptotic signalling may in
turn result in the activation of the main effector caspase,
caspase-3. Caspase-3 cleaves ICAD that contains two
caspase-3 cleavage sites. Subsequently, CAD is being
released from its chaperone, ICAD. Chromosomal DNA
is cleaved by the activated CAD, presumably at MAR/
SAR sites. Double strand breaks are primarily repaired
through NHEJ pathway which is prone to cause errone-
ous DNA repair. Cells that evade apoptosis may harbour
chromosome rearrangements such as translocation, de-
letion, addition and inversion. Repeated exposure to
these aetiological factors that provoke oxidative stress
may therefore contribute to tumourigenesis of NPC.
In the present study, we only focused on the SAR region

of the ABL gene. It is difficult to draw a solid conclusion
on the role of MAR/SAR in defining the positions of the
chromosome breakages. Therefore, for the future work,
comparison in the cleavage frequency between the ABL
SAR region and non-SAR region may be carried out. This
may allow a further elucidation of the potential role of
MAR/SAR in mediating the chromosome breakages and
rearrangements in oxidative stress-induced apoptosis.

Conclusions
Our findings demonstrated that oxidative stress-induced
apoptosis may be a potential mechanism that leads to
chromosome rearrangements in NPC. Our results also
suggested that NHEJ system is potentially involved in

DNA repair in cells undergoing oxidative stress-induced
apoptosis. The interaction between NHEJ DNA repair
system and oxidative stress-induced apoptosis may lead to
chromosome rearrangements in surviving cells. A revised
model for oxidative stress-induced apoptosis in mediating
chromosome rearrangement in NPC is proposed.

Fig. 11 A revised model for oxidative stress-induced chromosome
rearrangement in NPC
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Methods
Cell lines
NP69 normal nasopharyngeal epithelial cell line and
HK1 NPC cell line were kindly provided by Prof. Tsao
Sai Wah (The University of Hong Kong, Hong Kong,
China) and Prof. Lo Kwok Wai (The Chinese University
of Hong Kong, Hong Kong, China). NP69 is an immor-
talised nasopharyngeal epithelial cell line which was
established by transfection with SV40 large T oncogene.
It retains some characteristics of normal nasopharyngeal
epithelial cells and is non-tumourigenic. This cell line
may provide potential nasopharyngeal epithelial cell
model for investigating mechanisms involved in NPC
tumourigenesis [116]. HK1 was derived from a Chinese
male patient with recurrent squamous NPC 17 ½ years
after radiation therapy [117].

Chemicals
Hydrogen peroxide (H2O2) was bought from MP Bio-
medicals, USA. Keratinocyte-SFM medium, RPMI 1640
medium, penicillin, streptomycin, fetal bovine serum
and L-glutamine were purchased from GIBCO, Invitro-
gen, USA. Annexin V-Fluorescein isothiocyanate (FITC)
Apoptosis Detection Kit I (BD Pharmingen™) and Flow
Cytometry Mitochondrial Membrane Potential Detec-
tion Kit were bought from BD™ MitoScreen, Becton–
Dickinson Biosciences, USA. Camptothecin (CPT) was
purchased from Santa Cruz Biotechnology, CA, USA.
Ammonium acetate was bought from Merck, Germany.
Chloroform was bought from R&M Chemicals, UK. Phe-
nol and Sodium dodecyl sulfate (SDS) were procured
from Amresco, USA. Isoamyl alchohol was purchased
from Fluka, Switzerland. Phusion High-Fidelity DNA
Polymerase was procured from Finnzymes, Finland. PCR
primers were from First Base Laboratories. QIAquick
Gel Extraction Kit and QIAquick Nucleotide Removal
Kit were bought from QIAGEN, Germany. DNA Poly-
merase I Large (Klenow) Fragment, restriction enzymes
and T4 DNA Ligase were obtained from New England
Biolabs (NEB), USA. dNTP mix was purchased from
Promega, USA.

Cell cultures
NP69 cells were grown in Keratinocyte-SFM medium
supplemented with 100 μg/ml streptomycin, 100 U/ml
penicillin, 40–50 μg/ml Bovine Pituitary Extract (BPE),
4–5 ng/ml recombinant Epidermal Growth Factor
(rEGF) and 2% (v/v) heat-inactivated fetal bovine serum.
HK1 cells were cultured in RPMI 1640 medium supple-
mented with 100 μg/ml streptomycin, 100 U/ml penicil-
lin, 2 mM L-glutamine and 10% (v/v) heat-inactivated
fetal bovine serum. Cells were cultured at 37 °C with
5% CO2.

In silico prediction of MAR/SAR
The whole sequence of the ABL gene was retrieved
from Ensembl (http://www.ensembl.org/index.html)
database [Ensembl:ENSG00000097007]. The location
of the experimentally defined MAR/SAR was deter-
mined from the previous report [77]. By using DNAS-
TAR software (Lasergene, USA), we predicted the
possible MAR/SAR sites within the ABL gene. The
prediction of MAR/SAR site was performed by
searching MRS which comprises two nucleotide mo-
tifs. The first nucleotide motif is an 8 bp degenerate
sequence, AATAAYAA, where Y = C or T. The second
nucleotide motif is a 16 bp degenerate sequence,
AWWRTAANNWWGNNNC, where N = A, C, G or
T; R = A or G; W = A or T. One mismatch is allowed
in the 16 bp degenerate sequence. The 8 bp degener-
ate sequence has to be exactly matched. The two se-
quence elements of the MRS should be found within
200 bp apart. The two sequence elements can be
present on either Watson or Crick strand and in ei-
ther order. The two sequence elements may also be
overlapping. When there are more than one motif of
either 8 or 16 bp found within a distance of 200 bp,
they are considered as a single MRS. In addition,
when there is more than one MRS identified within
close proximity, they are regarded as a single poten-
tial MAR/SAR site [85].

Apoptosis detection
Phosphatidylserine (PS) externalisation
NP69 cells (1.5 × 105) were plated in 150-mm culture
dishes containing 15 ml of complete media. When NP69
cells reached confluency of 30–40% on the third day,
NP69 cells were either left untreated or treated with
100 μM of H2O2 for 16 and 24 h. HK1 cells (5.5 × 105)
were seeded in 150-mm culture dishes containing 15 ml
of complete media. When HK1 cells reached confluency
of 60–70% on the fourth day, HK1 cells were incubated
with 50 μM of H2O2 for 4 and 8 h. NP69 and HK1 cells
treated with camptothecin (CPT) were included as posi-
tive controls. After incubation, the cells were collected
by using StemPro ACCUTASE Cell Dissociation Re-
agent. The percentage of apoptotic cells was determined
by using Annexin V-FITC Apoptosis Detection Kit I as
previously described [80].

Mitochondrial membrane potential (MMP) loss
NP69 and HK1 cells were treated and collected as de-
scribed above. The percentage of MMP loss in the har-
vested cells was determined by using Flow Cytometry
Mitochondrial Membrane Potential Detection Kit as
previously described [80].
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IPCR detection of chromosome breaks within the ABL gene
Induction of apoptosis in normal nasopharyngeal epithelial
and NPC cells with H2O2

NP69 (2 × 104) and HK1 (8 × 104) cells were seeded in
60-mm culture plates containing 4 ml of complete
media. When NP69 cells reached confluency of 30–40%
on the third day, NP69 cells were either left untreated or
treated with 10, 50 or 100 μM for 16 and 24 h. When
HK1 cells reached confluency of 60–70% on the fourth
day, HK1 cells were either left untreated or treated with
1, 10 or 50 μM of H2O2 for 2, 4, 6 and 8 h.

Genomic DNA extraction
At the end of the indicated exposure times, the used
medium was discarded. The cells were washed once with
cold 1× phosphate-buffered saline (PBS). Genomic DNA
extraction was performed as previously described [80].

Manipulation of the extracted gDNA for nested IPCR
The extracted gDNA was manipulated as described pre-
viously [80] with minor modifications. Figure 12 shows
the manipulation steps. Digestion of the gDNA was per-
formed at 37 °C for 16 h with 100 U of Xba I (RE1 in
Fig. 12). The staggered four base pairs (CTAG) 5′ over-
hang was produced by Xba I digestion. The blunt ends
were generated by the apoptotic nuclease such as CAD

[118]. After Xba I digestion, both ends of the intact tar-
geted DNA fragment were Xba I sites with staggered
overhangs. As for the cleaved targeted DNA fragment,
one end was the blunt end produced by the apoptotic
nuclease, and the other end was the staggered overhang
generated by Xba I. To produce blunt-ended fragments,
Klenow fill-in was performed with two μg of DNA tem-
plate, two units of DNA Polymerase I Large (Klenow)
Fragment and 33 μM of dNTP mix at 25 °C for 15 min.
Cyclisation was then performed with 2000 U of T4 DNA
ligase at 16 °C for 16 h. Ethanol precipitation was carried
out with 3 M sodium acetate (NaAc) (one volume),
pH 5.2 and ice cold absolute ethanol (2.5 volumes). Sev-
enty percent ethanol was used to wash the DNA pellet.
The DNA pellet was then air-dried and dissolved in TE,
pH 8.0. The DNA sample was divided into three. The
DNA samples of tubes 1, 2 and 3 were subjected to
digestion with 10 U of Age I (RE2 in Fig. 12), double
digestion with 10 U of each Age I and BsaA I (RE3 in
Fig. 12), and double digestion with 10 U of each Age I
and EcoR I (RE3 in Fig. 12), respectively. These RE
digestions were performed at 37 °C for 16 h. Digestion
with Age I was used to linearise the cyclised DNA.
Double digestion with Age I and BsaA I or Age I and
EcoR I was used to eliminate competition from the in-
tact fragments during IPCR. The double digestion with

Fig. 12 A flowchart showing the manipulation steps in the preparation of genomic DNA for IPCR. The genomic DNA was subjected to RE digestions,
Klenow fill-in and ligation prior to IPCR as reported before [80]
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Age I and BsaA I enabled the detection of DNA cleav-
ages occurred within the amplified region towards the 3′
end. The double digestion with Age I and EcoR I enabled
the detection of DNA cleavages occurred within the
amplified region towards the 5′ end. According to the
manufacturer’s protocol, QIAquick Nucleotide Removal
Kit (QIAGEN) was used to purify the digested DNA.

Nested IPCR
The optical density (O.D.) of the purified DNA sample was
measured by using an ultraviolet-visible micro-volume
spectrophotometer (ND-1000, NanoDrop, USA). Nested
IPCR was performed with 1× of HF buffer (containing
1.5 mM of MgCl2), 0.5 μM of each reverse primer and for-
ward primer, 200 μM of dNTP mix, 0.4 U of Phusion
High-Fidelity DNA Polymerase and 200 ng of DNA tem-
plate. To serve as a negative control, sterile ultrapure water
was used to replace the DNA template. Cycle condition
used in the first round was: 30 s of 98 °C for 1 cycle (initial
denaturation), followed by 30 cycles of 98 °C for 10 s
(denaturation), 64 °C for 30 s (annealing), 72 °C for 55 s
(extension), followed by 1 cycle of 72 °C for 10 min (final
extension). Similar cycle condition was used in the second
round of IPCR, except that the extension time was 50 s.
Two microlitres of 5-fold diluted IPCR product of the first
round was used as DNA template. The primers used in the
first round of IPCR were 5’-GGTACCTGGTGTCT
GTCTCTATC-3′ (reverse) and 5′-AGAAGGTTTATGGG
AGATGG-3′ (forward), whereas the primers used in the
second round were 5′-TCTCTCATATCTCAGAGCC
TTC-3′ (reverse) and 5′-CTTCAGGAGCTCAGACTTT
TAC-3′ (forward). The IPCR assays were done by using a
Veriti 96 Well Thermal Cycler (Applied Biosystems, USA).

Agarose gel electrophoresis and DNA sequencing
The PCR products were analysed on 1% agarose gel. The
agarose gel electrophoresis was performed at 90 V for 1 h
and 30 min. The agarose gel was briefly stained with
ethidium bromide (0.5 μg/ml) and destained with distilled
water. This was followed by visualisation of the gel on an
ultraviolet (UV) transilluminator (Vilber Lourmat). The
gel image was captured and analysed using a gel docu-
mentation (gel doc) and image analysis system (Syngene).
The IPCR bands representing cleaved DNA fragments of
the ABL gene were purified by using QIAquick Gel
Extraction Kit (QIAGEN) according to the manufacturer’s
protocol and sequenced. By blasting the human genome
database (Genomic BLAST, https://blast.ncbi.nlm.nih.gov/
Blast.cgi), the sequencing data obtained was annotated. To
identify the breakpoints of the cleaved fragments, the se-
quencing data was analysed and aligned with the published
ABL gene sequence [Ensembl:ENSG00000097007] by using
Seqman DNASTAR software (Lasergene, USA). The posi-
tions of DNA breaks identified were compared with the

location of the MAR/SAR sequence isolated experimentally
in the previous study [77] and the MRS identified in the
present study. A genomic map was constructed to depict
the positions of the detected DNA breaks relative to the lo-
cation of the MAR/SAR.

Quantification of gene cleavage frequency
In each set of IPCR, four to seven IPCR replicates were
prepared per cell sample. Each experiment consisted of
one to three sets of IPCR. The number of IPCR bands
representing the ABL cleaved fragments was counted.
Gene cleavage frequency expresses the average number
of ABL cleaved fragments detected in three independent
experiments.

Statistical analysis
Experiments were repeated three to five times. The signifi-
cance of differences in the gene cleavage frequency
detected by nested IPCR was evaluated by Student’s t test.
Data for IPCR are expressed as mean and standard
deviation (SD). Differences were considered statistically
significant at p value < 0.05. All statistical tests are
two sided.
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