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Abstract

Members of the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) superfamily of
proteins are cysteine-rich proteins characterized by a distinct disulfide bridge pattern that creates the three-finger
Ly6/uPAR (LU) domain. Although the Ly6/uPAR family proteins share a common structure, their expression patterns
and functions vary. To date, 35 human and 61 mouse Ly6/uPAR family members have been identified. Based on
their subcellular localization, these proteins are further classified as GPI-anchored on the cell membrane, or secreted.
The genes encoding Ly6/uPAR family proteins are conserved across different species and are clustered in syntenic
regions on human chromosomes 8, 19, 6 and 11, and mouse Chromosomes 15, 7, 17, and 9, respectively. Here, we
review the human and mouse Ly6/uPAR family gene and protein structure and genomic organization, expression,
functions, and evolution, and introduce new names for novel family members.
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Introduction
The lymphocyte antigen-6 (Ly6)/urokinase-type plas-
minogen activator receptor (uPAR) superfamily of struc-
turally related proteins is characterized by the LU
domain, an 80 amino acid domain containing ten cyste-
ines arranged in a specific spacing pattern that allows
distinct disulfide bridges which create the three-fingered
(3F) structural motif [1, 2]. Ly6/uPAR proteins were first
identified in the mouse over 35 years ago using antisera
against lymphocytes [3]. Human homologs were subse-
quently isolated, leading to the recognition that they
represent a well-conserved family with wide-ranging ex-
pression patterns and important functions. The fully an-
notated human and mouse genomes contain 35 and 61
Ly6/uPAR family members, respectively. Research over
the last decade has begun to unravel the important func-
tions of the encoded proteins. In this review, we provide

an overview of the Ly6/uPAR gene family and their gen-
omic organization, evolution, as well as functions, and
provide a nomenclature system for the newly identified
members of this family.

Inclusion and approved nomenclature for novel
Ly6/uPAR family members
Although Ly6/uPAR family members are related by their
structure, absence of a uniform naming convention re-
sulted in arbitrary nomenclature for these genes as they
were discovered. As many of the currently approved
gene symbols for Ly6/uPAR family members (e.g., CD59
and PLAUR) have been widely used in the scientific
literature for many years, we have refrained from a
family-wide attempt to standardize their well-established
names, avoiding the potential for additional confusion.
In compiling this update, we came across many novel
members of the Ly6/uPAR gene family, especially in the
mouse genome, that did not yet have a systematic name.
We named these novel family members in line with the
Ly6/uPAR genes that they are most related to, based on
a phylogenetic analysis (see below) using either the
established LY6/Ly6# root for those that fell within the
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LY6 clades, or the LYPD/Lypd# (LY6/PLAUR domain-
containing) root for those outside the LY6 clades. The
new symbols for these genes (1 human and 18 mouse),
approved by the HGNC (HUGO Gene Nomenclature
Committee) [4, 5] and MGNC (Mouse Genomic No-
menclature Committee) [6], are listed in Tables 1 and 2,
respectively. We use the newly approved names for these
genes in the rest of this update. HGNC have also created
a gene family web-page for the human Ly6/uPAR family
members (http://www.genenames.org/cgi-bin/genefami-
lies/set/1226).

Genomic organization of the Ly6/uPAR gene
family
The Ly6/uPAR gene family currently includes 35 well-
characterized human members, while the mouse gene
family is considerably larger with 61 genes. Information
including the name, chromosomal location, numbers of
exons and LU domains for human and mouse family
members is summarized in Tables 1 and 2, respectively.
Twelve human Ly6 genes are clustered together within
a short span of about 500 kb on chromosome 8 (8q24)
(moving outward from the center of the chromosome:
PSCA, LY6K, SLURP1, LYPD2, LYNX1/SLURP2, LY6D,
GML, LY6E, LY6L, LY6H, and GPIHBP1) (http://gen-
ome-euro.ucsc.edu). The syntenic region on mouse
Chromosome 15 (15D3-15E1) contains Psca, Slurp1,
Lypd2, Slurp2, Lynx1, Ly6d, Ly6g6g, Ly6k, Gml, Gml2,
Ly6m, Ly6e, Ly6i, Ly6a, Ly6c1, Ly6c2, Ly6a2, Ly6g,
Ly6g2, Ly6f, Ly6l, Ly6h, and Gpihbp1. Other smaller
clusters are seen on human chromosome 19 (19q13)
(LYPD4, CD177, TEX101, LYPD3, PINLYP, PLAUR,
LYPD5, and SPACA4 with syntenic region on mouse
Chromosome 7 containing Lypd5, Plaur, Pinlyp, Lypd3,
Tex101, Lypd10, Lypd11, Cd177, Lypd4, and Spaca4),
human chromosome 11 (11q24.2) (ACRV1, PATE1,
PATE2, PATE3, and PATE4 with syntenic region on
mouse Chromosome 9 containing Pate4, Pate2, Pate13,
Pate3, Pate1, Pate10, Pate7, Pate6, Pate5, Pate12,
Pate11, Pate9, Pate8, Pate14, and Acrv1), and human
chromosome 6 (6p21) (LY6G6C, LY6G6D, LY6G6F,
LY6G5C, and LY6G5B with syntenic region in the MHC
class III region of the mouse Chromosome 17 contain-
ing Ly6g6c, Ly6g5c, Ly6g5b, Ly6g6d, Ly6g6f, and Ly6g6e),
while the remaining family members are found on
other chromosomes (Tables 1 and 2).

Typical Ly6/uPAR gene structure
Ly6/uPAR family members typically contain one LU
domain, with the exception of LYPD3 [7] and CD177
[8] which contain two, and PLAUR [9], which con-
tains three direct repeats of the LU domain (Tables 1
and 2). The mouse Cd177 differs from its human
ortholog in that it contains four direct repeats of the

LU domain. A typical Ly6/uPAR family gene consists
of three exons and two introns (Fig. 1a), with the sig-
nal peptide being encoded in the first exon. The ma-
ture polypeptide is encoded by the last two exons,
with the GPI-anchor domain encoded by the third
exon.
Based on their subcellular localization, Ly6/uPAR

family members are further subdivided into two groups:
membrane-tethered (through a GPI-anchor domain) or
secreted (lacking the GPI-anchor domain). GPI-
anchored Ly6/uPAR family members tend to congre-
gate on lipid rafts on the cell surface, which promotes
their interactions with other proteins. A fraction of the
GPI-anchored Ly6/uPAR family proteins such as
PLAUR are secreted after their GPI-anchor domain is
proteolytically cleaved [10–12]. Experimental evidence
supports the presence of a GPI-anchoring signal pep-
tide in a majority of Ly6/uPAR family members, while
it is absent in a few (Table 3). For those with no experi-
mental evidence, the GPI-anchor signal predictor ‘Pre-
dGPI’ program (http://gpcr.biocomp.unibo.it/predgpi/)
[13] predicted the presence of a GPI-anchor signal
within mouse and human LYPD8 and LY6L, and in
mouse LYPD10, LYPD11, LYPD9, LY6F, and LY6M,
while predicting its absence in mouse and human
LYPD4, LY6G6F, and PINLYP, and in mouse GML2 and
LY6G6 (Table 3).

Structure of the LU domain
The Ly6/uPAR family members have a well-conserved
LU domain with a characteristic three-finger structure
formed by disulfide bridges connecting the conserved
cysteine residues in a specific pattern. LU domains are
topologically similar to the three-finger structure of
snake venom neurotoxins, which have three β-sheet
loops fixed in space by virtue of their unique disulfide
bridges. The structure of the extracellular region of
CD59 was first solved by 2D NMR methods [14, 15] and
further refined by crystallography [16] revealing it to be
a flat, disk-shaped molecule consisting of a two-
stranded beta-sheet finger loosely packed against a pro-
tein core formed by a three-stranded beta-sheet and a
short helix.
Alignment of LU domain amino acid sequences of se-

lected human LY6/UPAR proteins performed using
ProbCons (http://toolkit.tuebingen.mpg.de) revealed the
location of conserved cysteines (Fig. 1b). Five well-
conserved disulfide bridges between cysteine pairs 3 and
26, 6 and 13, 19 and 39, 45 and 63, and 64 and 69
stabilize the hydrophobic core, from which three β-
sheet-based fingers protrude (Fig. 1b). The sequence of
the amino acids exposed at the tips of each finger as well
as the length of each of the fingers is variable, providing
the three-finger motif with the flexibility for a wide
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Table 1 Name, chromosomal location, number of exons, and LU domains for human Ly6/uPAR family genes

Approved gene symbol
(NCBI accession #)

Gene name Alias(es) Genomic
location

Number of

Exons LU Domains

ACRV1
(NP_001603.1)

Acrosomal vesicle protein 1 SP-10; SPACA2; D11S4365 11q24.2 5 1

CD177
(BAE93254.1)

CD177 molecule (Human Neutrophil Alloantigen 2A) NB1; PRV1; HNA2A; PRV-1; HNA-2a; NB1 GP 19q13.2 9 2

CD59
(CAG46523.1)

CD59 molecule, complement regulatory protein 1 F5; EJ16; EJ30; EL32; G344; MIN1; MIN2;
MIN3; MIRL; HRF20; MACIF; MEM43;
MIC11; MSK21; 16.3A5; HRF-20; MAC-IP;
p18-20

11p13 5 1

GML
(EAW82296.1)

Glycosylphosphatidylinositol anchored molecule like LY6DL 8q24.3 5 1

GPIHBP1
(AAH35810.2)

Glycosylphosphatidylinositol anchored high density
lipoprotein-binding protein 1

HYPL1D; GPI-HBP1 8q24.3 4 1

LY6D
(AAH31330.1)

Lymphocyte antigen 6 complex, locus D E48; Ly-6D 8q24 3 1

LY6E
(AAH03392.1)

Lymphocyte antigen 6 complex, locus E RIGE; SCA2; RIG-E; SCA-2; TSA-1 8q24.3 4 1

LY6G5B
(CAC85543.1)

Lymphocyte antigen 6 complex, locus G5B G5b; C6orf19 6p21.3 3 1

LY6G5C
(CAC85542.1)

Lymphocyte antigen 6 complex, locus G5C G5C; NG33; C6orf20; LY6G5CA; LY6G5CB 6p21 3 1

LY6G6C
(EAX03491.1)

Lymphocyte antigen 6 complex, locus G6C G6c; NG24; C6orf24 6p21 3 1

LY6G6D
(CAC85540.1)

Lymphocyte antigen 6 complex, locus G6D G6D; NG25; LY6-D; MEGT1; C6orf23 6p21.3 3 1

LY6G6F
(AAI37213.1)

Lymphocyte antigen 6 complex, locus G6F G6f; NG32; LY6G6D; C6orf21 6p21.33 6 1

LY6H
(BAA34115.1)

Lymphocyte antigen 6 complex, locus H NMLY6 8q24.3 4 1

LY6K
(AAI17145.1)

Lymphocyte antigen 6 complex, locus K CT97; ly-6 K; URLC10; HSJ001348 8q24.3 3 1

LY6La

(XP_011544859.1)
Lymphocyte antigen 6 complex, locus L LOC101928108 8q24.3 5 1

LYNX1
(NP_803429.1)

Ly6/neurotoxin 1 8q24.3 4 1

LYPD1
(EAX11675.1)

Ly6/PLAUR domain containing 1 PHTS; LYPDC1; LYNX2 2q21.2 3 1

LYPD2
(EAW82307.1)

Ly6/PLAUR domain containing 2 LYPDC2; UNQ430 8q24.3 3 1

LYPD3
(EAW57190.1)

Ly6/PLAUR domain containing 3 C4.4A 19q13.31 5 2

LYPD4
(AAH34629.1)

Ly6/PLAUR domain containing 4 Sperm Membrane Receptor 19q13.2 5 1

LYPD5
(EAW57232.1)

Ly6/PLAUR domain containing 5 PRO4356 19q13.31 5 1

LYPD6
(AAH47013.1)

Ly6/PLAUR domain containing 6 2q23.2 5 1

LYPD6B
(AAH18203.1)

Ly6/PLAUR domain containing 6B CT116; LYPD7 2q23.2 7 1

LYPD8
(NP_001278212.1)

Ly6/PLAUR domain containing 8 1q44 7 1

PATE1
(AAI07045.1)

Prostate and testis expressed 1 PATE 11q24.2 5 1

Prostate and testis expressed 2 PATE-M; UNQ3112; C11orf38 11q24.2 6 1
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range of intermolecular interactions. In addition to the
LU domain, Ly6/uPAR family proteins possess a well-
conserved LeuXxxCysXxxXxxCys motif at the amino-
terminus and CysCysXxxXxxXxxXxxCysAsn motif at
the carboxyl-terminus (Fig. 1b). Functional relevance of
these motifs is not yet known.
Most Ly6/uPAR family proteins maintain the ten cys-

teines characteristic of the LU domain, with some not-
able exceptions. In PLAUR, which consists of three LU
domains (designated D1, D2 and D3), only domain D2 is
fully intact with ten cysteines, while domains D1 and D3
have seven and eight cysteines, respectively. Isoforms of
proteins such as human LY6G5C maintain conserva-
tion throughout the LU domain in almost every iso-
form. In contrast, different isoforms of human LYNX1
maintain the necessary cysteines, but little else is con-
served (Fig. 1b).

Expression of Ly6/uPAR family genes
The expression pattern, interacting factors, and cellular
functions of the mouse and human Ly6/uPAR family
members are summarized in Table 3. Expression of
Ly6/uPAR proteins is (i) widespread and variable
across diverse cell types and tissues, (ii) tightly regu-
lated in a spatiotemporal manner, and (iii) often corre-
lated with cellular differentiation. Although the Ly6/
uPAR family protein structures are well-conserved
across species, their expression patterns tend to vary,
indicating divergence among their regulatory networks.
Many Ly6/uPAR family members are expressed in
hematopoietic precursors in a lineage-specific fashion

making them useful cell surface markers for leukocytes,
facilitating identification of individual leukocyte sub-
groups [17–19]. For example, mouse myeloid differen-
tiation marker LY6G (also called Gr-1) is expressed by
the myeloid lineage cells in a developmentally regu-
lated manner in the bone marrow. Anti-LY6G anti-
bodies are routinely used to identify neutrophils in the
mouse but not humans as there is no human ortholog
for Ly6g. Ly6/uPAR family members are generally up-
regulated during inflammatory conditions or infections
and in cancerous cells, with a notable exception of
SLURP1, which is invariably downregulated in pro-
inflammatory conditions [9, 20–24].

Functions of Ly6/uPAR family proteins
Commensurate with their varied expression patterns,
Ly6/uPAR proteins have a wide range of functions in cell
proliferation, migration, cell-cell interaction, immune
cell maturation, macrophage activation, and cytokine
production. They typically exert their influence by
targeting nicotinic acetylcholine receptors (nAChRs)
(reviewed in [1]). GPI-anchored Ly6/uPAR proteins lack-
ing a cytoplasmic tail are unable to directly participate
in intracellular signaling but can initiate signaling by
interacting with other transmembrane proteins. Such in-
teractions of GPI-anchored proteins are further facili-
tated by their tendency to congregate in lipid rafts on
the cell surface, where other signaling molecules also are
enriched. While GPI-anchored Ly6/uPAR proteins con-
trol signaling through interaction with their ligand(s), se-
creted Ly6/uPAR proteins may serve as agonists for

Table 1 Name, chromosomal location, number of exons, and LU domains for human Ly6/uPAR family genes (Continued)

PATE2
(AAI44527.1)

PATE3
(NP_001123355.3)

Prostate and testis expressed 3 HEL-127; PATE-DJ 11q24.2 3 1

PATE4
(NP_001138346.1)

Prostate and testis expressed 4 PATE-B 11q24.2 3 1

PINLYP
(NP_001180550.1)

Phospholipase A2 inhibitor and Ly6/PLAUR domain
containing

19q13.31 6 1

PLAUR
(CAG33233.1)

Plasminogen activator, urokinase receptor CD87; UPAR; URKR; U-PAR 19q13 7 3

PSCA
(AAH65183.1)

Prostate stem cell antigen PRO232 8q24.2 3 1

SLURP1
(AAT01436.1)

Secreted Ly6/PLAUR domain containing 1 ARS; MDM; ANUP; ArsB; LY6LS 8q24.3 3 1

SLURP2
(NP_803253.1)

Secreted Ly6/PLAUR domain containing 2 LYNX1, isoform B precursor 8q24.3 4 1

SPACA4
(AAQ88753.1)

Sperm acrosome associated 4 SAMP14 19q13.33 1 1

TEX101
(EAW57189.1)

Testis expressed 101 SGRG; CT131; GTPR867; NYD-SP8;
PRO1884; SPATA44; TES101RP

19q13.31 9 1

aNovel gene named in this study
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Table 2 Name, chromosomal location, number of exons and LU domains for mouse Ly6/uPAR family genes

Approved gene symbol
(NCBI Accession #)

Gene name Alias(es) Genomic
location

Number of

Exons LU domains

Acrv1
(EDL25409.1)

Acrosomal vesicle protein 1 Msa63; SP-10 9 A4 4 1

Cd177
(AAH27283.1)

CD177 antigen Pdp3; 1190003K14Rik 7 A3 17 4

Cd59a
(AAL04433.1)

CD59a antigen Cd59; AA987121; protectin 2 54.53 cM 6 1

Cd59b
(AAL04434.1)

CD59b antigen 2 E2 9 1

Gml
(CAB57316.1)

Glycosylphosphatidylinositol anchored
molecule like

HemT3; EG625599 15 D3 5 1

Gml2
(AAI19338.1)

Glycosylphosphatidylinositol anchored
molecule like 2

HemT; Hemt1; 1700057K19Rik 15 D3 7 1

Gpihbp1
(NP_081006.1)

Glycosylphosphatidylinositol anchored
high density lipoprotein-binding protein 1

GPI-HBP1; 1110002J19Rik 15 E1 4 1

Ly6a
(AAH02070.1)

Lymphocyte antigen 6 complex, locus A TAP; Sca1; Sca-1; Ly-6A.2; Ly-6A/E;
Ly-6E.1

15 34.29 cM 4 1

Ly6a2a

(XP_006543305.1)
Lymphocyte antigen 6 complex, locus A2 Ly6A-2/E-1, I830127L07Rik 15 D3 4 1

Ly6c1
(AAH10764.1)

Lymphocyte antigen 6 complex, locus C1 Ly6c; Ly-6C; Ly-6C1; AA682074;
AA959465

15 34.29 cM 6 1

Ly6c2
(NP_001092687.1)

Lymphocyte antigen 6 complex, locus C2 Ly-6C2; Ly-6C.2 15 D3 4 1

Ly6d
(EDL29445.1)

Lymphocyte antigen 6 complex, locus D Thb; Ly61; Ly-61 15 D3 3 1

Ly6e
(CAJ18452.1)

Lymphocyte antigen 6 complex, locus E Ly67; Tsa1; RIG-E; Sca-2; TSA-1 15 D3 5 1

Ly6f
(EDL29474.1)

Lymphocyte antigen 6 complex, locus F 15 D3 4 1

Ly6g
(NP_001297367.1)

Lymphocyte antigen 6 complex, locus G Gr1; Gr-1; Ly-6G 15 D3 4 1

Ly6g2a

(AAH25446.1)
Lymphocyte antigen 6 complex, locus G2 BC025446 15 D3 6 1

Ly6g5b
(CAC85549.1)

Lymphocyte antigen 6 complex, locus G5B 17 B1 3 1

Ly6g5c
(CAC85548.1)

Lymphocyte antigen 6 complex, locus G5C G5c; NG33 17 B1 3 1

Ly6g6c
(AAI16367.1)

Lymphocyte antigen 6 complex, locus G6C G6c; NG24; AU016360;
1110003M04Rik

17 B1 3 1

Ly6g6d
(CAC85545.1)

Lymphocyte antigen 6 complex, locus G6D G6d; G6f; NG25; NG32;
MEGT1; A930024F17Rik

17 B1 4 1

Ly6g6e
(AAI38778.1)

Lymphocyte antigen 6 complex, locus G6E G6e; 2310011I02Rik 17 B2 3 1

Ly6g6f
(AAI72069.1)

Lymphocyte antigen 6 complex, locus G6F CJ068215 17 B1 6 1

Ly6g6ga

(EDL29446.1)
Lymphocyte antigen 6 complex, locus G6G D730001G18Rik 15 D3 3 1

Ly6h
(AAH28758.1)

Lymphocyte antigen 6 complex, locus H 15 E1 6 1

Ly6i
(AAI45088.1)

Lymphocyte antigen 6 complex, locus I Ly-6I; Ly-6 M; AI789751 15 D3 6 1

Ly6k
(AAH49723.1)

Lymphocyte antigen 6 complex, locus K mLy-6 K; 2410015A16Rik;
3110035B01Rik

15 4 1

Loughner et al. Human Genomics  (2016) 10:10 Page 5 of 19



Table 2 Name, chromosomal location, number of exons and LU domains for mouse Ly6/uPAR family genes (Continued)

Ly6la

(XP_006521679.1)
Lymphocyte antigen 6 complex, locus L Gm20654 15 34.37 cM 3 1

Ly6ma

(EDL29458.1)
Lymphocyte antigen 6 complex, locus M 2010109I03Rik 15 D3 3 1

Lynx1
(AAF16899.1)

Ly6/neurotoxin 1 AI838844 15 D3 4 1

Lypd1
(AAH58599.1)

Ly6/PLAUR domain containing 1 Lynx2; Lypdc1; AI853408;
2700050C12Rik; C530008O16Rik

1 E3 6 1

Lypd2
(AAI32410.1)

Ly6/PLAUR domain containing 2 VLL; Lypdc2; 0610005K03Rik 15 E1 4 1

Lypd3
(AAH16549.1)

Ly6/PLAUR domain containing 3 C4.4a; 2310061G07Rik 7 A3 5 2

Lypd4
(AAH49744.1)

Ly6/PLAUR domain containing 4 4933400F01Rik 7 A3 5 1

Lypd5
(AAI07188.1)

Ly6/PLAUR domain containing 5 2210003I03Rik 7 A3 5 1

Lypd6
(AAH70462.1)

Ly6/PLAUR domain containing 6 E130115E03Rik 2 C1.1 7 1

Lypd6b
(AAI26944.1)

Ly6/PLAUR domain containing 6B AW049525; 2310010M24Rik 2 C1.1 14 1

Lypd8
(NP_001077353.1)

Ly6/PLAUR domain containing 8 2210415F13Rik 11 B1.3 8 1

Lypd9a

(AAH48595.1)
Ly6/PLAUR domain containing 9 4930504O13RikGm524 11 B1.3 4 1

Lypd10a

(BC049730.1)
Ly6/PLAUR domain containing 10 BC049730 7 A3 8 1

Lypd11a

(NP_808261.1)
Ly6/PLAUR domain containing 11 Gm4763,EG210155 7 A3 9 1

Pate1
(NP_001186882.1)

Prostate and testis expressed 1 Pate 9 A4 5 1

Pate2
(NP_001028593.1)

Prostate and testis expressed 2 Gm846; Pate-M; mANLP1 9 A4 10 1

Pate3
(NP_001161064.1)

Prostate and testis expressed 3 Pate-dj 9 A4 3 1

Pate4
(AAI20767.1)

Prostate and testis expressed 4 Svs7; Pate-B; 9530004K16Rik 9 A4 4 1

Pate5a

(NP_084139.1)
Prostate and testis expressed 5 9230110F15Rik, Pate-A, mANLP3 9 A4 3 1

Pate6a

(NP_080869.1)
Prostate and testis expressed 6 D730048I06Rik, Pate-C, mANLP2 9 A4 3 1

Pate7a

(NP_001161145.1)
Prostate and testis expressed 7 Pate-E, Gm17727 9 A4 3 1

Pate8a

(NP_001161056.1)
Prostate and testis expressed 8 Pate-G,Gm17689 9 A4 3 1

Pate9a

(NP_001028955.1)
Prostate and testis expressed 9 Pate-H, EG434396, Gm5615 9 A4 3 1

Pate10a

(ACD81927.1)
Prostate and testis expressed 10 Pate-N, Gm17677 9 A4 3 1

Pate11a

(ACD81928.1)
Prostate and testis expressed 11 Pate-P, Gm9513 9 A4 4 1

Pate12a

(NP_001161058.1)
Prostate and testis expressed 12 Pate-Q, EG639025, Gm7257 9 A4 4 1

Pate13a

(XP_006510783.1)
Prostate and testis expressed 13 9230113P08Rik 9 A4 3 1
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other receptors including nAChR and/or competing
scavengers of their ligands [1, 20, 21, 25–27]. Many Ly6/
uPAR family members have a prominent role in neutro-
phils (Table 3) [28]. Below, we summarize the functions
of a few well-studied members.

Prostate and testis expressed genes
Human chromosome 11 contains 5 prostate and testis
expressed (PATE) genes while the syntenic region on
murine Chromosome 9 contains 15 genes [29]. Recent
evidence demonstrates that PATE proteins are much
more predominantly expressed in the epididymis with a
significantly lower expression in the prostate and testis,
suggesting that their names are misnomers [30]. PATE
proteins secreted by epithelial cells to the epididymal
lumen facilitate spermatozoan maturation as they leave
the testis and travel through the epididymis. PATE pro-
teins localized in the sperm head assist in sperm-
oolemma fusion and penetration [31]. Defects in PATE1
result in decreased sperm motility in aged men and
young asthenozoospermia patients, revealing the mo-
lecular basis for the decline in sperm quality with age
[32]. PATE4 is abundantly expressed in the mouse pros-
tate, spermatozoa, and seminal vesicles. Pate4−/− mice
remain fertile and do not display any histological abnor-
malities [33]. PATE proteins are also expressed in
neuron-rich tissues, where they function by modulating
nAChR activities [29].

Plasminogen activator, urokinase receptor
Also known as the urokinase-type plasminogen activator
receptor (uPAR), plasminogen activator, urokinase re-
ceptor (PLAUR) is the most well-studied family member
[9]. It is widely expressed in different cell types and plays
a key regulatory role in cell surface plasminogen

activation, influencing many normal and pathologic pro-
cesses [9, 23]. PLAUR consists of three direct repeats of
the LU domain, which together bind urokinase-type
plasminogen activator (PLAU/uPA) in both the pro-
protein and mature forms. PLAUR (i) expression is regu-
lated by KLF4 [34] and is upregulated in cancer cells
[35, 36] and in response to pro-inflammatory conditions
[37], (ii) facilitates neutrophil recruitment in response to
bacterial infection [38], (iii) facilitates clearance of Borre-
lia infection [39], and (iv) interacts with multiple part-
ners including vitronectin and different integrins.
Although the bulk of PLAUR exists as GPI-anchored,
some of it is known to be secreted as “soluble uPAR”
(suPAR), the expression level of which is correlated with
disease conditions [10–12, 40].
PLAUR is a multi-functional protein with important

roles in regulating cell-matrix interaction, motility,
and immune response. PLAUR expression levels dir-
ectly correlate with the invasive potential of endomet-
rial carcinomas, suggesting that it is a valuable
prognostic marker for aggressive endometrial tumors
[35]. PLAUR expression is normally low in healthy
glomeruli and is elevated in glomeruli from individ-
uals with focal segmental glomerulosclerosis, consist-
ent with its role in regulating renal permeability [41].
PLAUR is required for neutrophil recruitment into al-
veoli and lungs in response to S. pneumoniae infec-
tion [42]. Plaur−/− macrophages display an enhanced
ability to engulf wild-type neutrophils, but Plaur−/−
neutrophils do not, suggesting that PLAUR plays an
essential role in recognition and clearance of neutro-
phils [43]. Plaur−/− mice exhibit abnormal inter-
neuron migration from the ganglionic eminence, and
reduced interneurons in the frontal and parietal cor-
tex [44, 45].

Table 2 Name, chromosomal location, number of exons and LU domains for mouse Ly6/uPAR family genes (Continued)

Pate14a

(NP_001028497.1)
Prostate and testis expressed 14 A630095E13Rik, Gm191; Sslp1 9 A4 4 1

Pinlyp
(NP_001032220.1)

Phospholipase A2 inhibitor and Ly6/PLAUR
domain containing

2310033E01Rik 7 A2-A3 6 1

Plaur
(NP_035243.1)

Plasminogen activator, urokinase receptor Cd87; uPAR; u-PAR 7 A3 11 3

Psca
(EDL29439.1)

Prostate stem cell antigen 2210408B04Rik 15 D3 3 1

Slurp1
(EDL29441.1)

Secreted Ly6/PLAUR domain containing 1 ARS; ArsB; Slurp-1; AI415082;
1110021N19Rik

15 D3 3 1

Slurp2a

(AAI15612.1)
Secreted Ly6/PLAUR domain containing 2 2300005B03Rik 15 D3 3 1

Spaca4
(AAH48608.1)

Sperm acrosome associated 4 Samp14; AV043694;
1700008E09Rik

7 B4 1 1

Tex101
(AAH48475.1)

Testis expressed 101 AI429076; TES101RP;
1700008H15Rik

7 A3 6 1

aNovel genes named in this study
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CD177
Expressed by neutrophils, neutrophilic metamyelocytes,
and myelocytes, CD177 mediates neutrophil migration
across the endothelium by binding PECAM1 (CD31).
Anti-CD177 antibodies inhibit neutrophil transmigration
across the endothelial monolayer, potentially by interfering
with an interaction between CD177 and PECAM1 [46].
Mutations in CD177 or its dysregulated expression are as-
sociated with myeloproliferative diseases, secondary to a
gain-of-function mutation in JAK2 [8]. Exposure of human
neutrophils to pulmonary endotoxin results in strong up-
regulation of CD177 [47]. Expression of CD177 mRNA is
highly upregulated following endotoxin exposure. Overex-
pression of CD177 is a biomarker for thrombocythemia pa-
tients with elevated risk of thromboembolic complications
[8]. While human CD177 contains nine exons that encode
a protein with two LU domain repeats, mouse Cd177 is
substantially larger with 17 exons that encode a larger pro-
tein with four LU domain repeats. Surprisingly, Cd177−/−
mice displayed no discernible phenotype or any change in
immune cells, other than decreased neutrophil counts in
peripheral blood [47]. Absence of CD177 had no signifi-
cant impact on CXCL1/KC- or fMLP-induced mouse neu-
trophil migration, but led to significant cell death [47].

Complement regulatory protein CD59
CD59 is an essential regulatory protein that protects
hematopoietic and neuronal cells against complement-

mediated osmolytic pore formation by binding C8 and/
or C9 and inhibiting the incorporation of C9 into the
membrane attack complex [17, 48–51]. CD2-mediated
CD59 stimulation results in secretion of IL1A (IL-1α),
IL6, and CSF2 (GM-CSF) in keratinocytes [52]. Inad-
equate complement regulation is associated with age-
related macular degeneration [53]. Mutations in CD59
cause uncontrolled complement activation in hemolytic
anemia, thrombosis, and cerebral infarction in paroxys-
mal nocturnal hemoglobinuria [54]. The mouse genome
contains two homologs of CD59, termed Cd59a, and
Cd59b. Mouse CD59B has approximately a sixfold
higher specific activity than CD59A and is considered a
true ortholog of human CD59. Cd59a deficiency exacer-
bated the skin disease and lymphoproliferative character-
istic of the MRL/lpr murine lupus model suggesting that
CD59A inhibits systemic autoimmunity in the MRL/lpr
lupus model through a complement-independent mech-
anism [55]. Consistent with its higher specific activity,
Cd59b−/− mice display a stronger phenotype including
hemolytic anemia, anisopoikilocytosis, echinocytosis,
schistocytosis, hemoglobinuria with hemosiderinuria,
and platelet activation [56]. Cd59b−/− males suffer from
progressive loss of fertility after 5 months of age [56].

Prostate stem cell antigen
Prostate stem cell antigen (PSCA) is a 123 amino acid
protein with an N-terminal signal sequence, and a C-

Signal
Peptide

GPI-Anchor 
    Domain

LU Domain LU DomainUpstream NTS

Promoter

Downstream NTS

 Structure of a typical Ly6/uPAR family gene

 Alignment of amino acid sequence of LU domains of selected human Ly6/uPAR family proteins 

a

b

Fig. 1 Structure of a typical Ly6/UPAR family gene and alignment of amino acid sequences of selected LU domains. a Structure of a typical LY6/
UPAR family gene, showing three exons (E-1, E-2 and E-3), two introns (I-1 and I-2), and the location of signal peptide as well as GPI-anchor
domain. b Alignment of LU domain amino acid sequences of selected human LY6/UPAR proteins. GPI-anchored (top) and secreted (bottom)
proteins are clustered together, with an empty line in between. Alignments were performed using ProbCons in Bioinformatics toolkit provided by
Max-Planck Institute for Developmental Biology (http://toolkit.tuebingen.mpg.de). Conserved cysteines linked by non-variant disulfide bridges are
highlighted in similar colors. Isoforms are denoted with a dash and the isoform name (e.g. LY6G6D-A). LYNX1-C and SLURP2 are precursor forms
of the final protein. NTS, Non-translated sequence
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Table 3 Expression patterns, interacting factors and cellular functions of mouse Ly6/uPAR family proteins

Approved
protein symbol

Human
ortholog?

Expression pattern Interacting factors Cellular function Gene knockout? GPI-anchor? References

ACRV1 Yes Spermatazoa (acrosomes) TARDBP (TDP-43) Sperm-oolemma binding/penetration No No [29, 31, 109–111]

CD177 Yes Neutrophils PR3, PECAM1 Neutrophil activation Yes Yes [46, 47, 112–114]

CD59A No Neurons, T cells, splenic macrophages,
spermatids

MAC Complex Complement inhibitor Yes Yes [115–118]

CD59B Yes
(as CD59)

Lymphocytes, granulocytes, platelets,
erythrocytes, activated T cells,
spermatazoa, splenic macrophages,
mature spermatozoa

C8, C9 Complement inhibition, cell-cell
adhesion

Yes Yes [17, 48, 56, 67,
118–120]

GML Yes Cancer cells TRP53 Apoptosis No Yes [121, 122]

GML2 No Hematopoetic stem cells Unknown Unknown No Predicted No [123]

GPIHBP1 Yes Capillary endothelial cells LPL Chylomicron processing, LPL transport Yes Yes [62, 63, 124]

LY6A No Hematopoetic stem cells, B cells, T cells,
DCs

IFN-γ, MMPs T cell activation and proliferation
controller

Yes Yes [28, 125–129]

LY6A2 No Unknown Unknown Unknown No Predicted Yes

LY6C1 No T cells, NK cells, monocytes, neutrophils,
DCs, bone marrow myeloid cells

Type I and II interferons, LFA-1 CD8+ T cell migration No Yes [28]

LY6C2 No T cells, NK cells, monocytes, neutrophils,
DCs, bone marrow myeloid cells

Type I and II interferons, LFA-1 CD8+ T cell migration No Yes [28]

LY6D Yes Keratinocytes, B cells Camptothecin, mitomycin C,
carboplatin, hydroxyurea, aphidicolin

Cell adhesion, B cell specification No Yes [130–134]

LY6E Yes Myeloid cells, thymocytes Retinoic acid, INF1 Monocyte inhibitor, T cell
development

No Yes [135–139]

LY6F No Non-lymphoid tissues Unknown Unknown No Predicted Yes [140]

LY6G No Neutrophils, granulocytes LTB4, β2-integrins Neutrophil recruitment No Yes [28, 109, 141]

LY6G2 No Unknown Unknown Unknown No Predicted No

LY6G5B Yes Stomach, placenta Unknown Unknown No No [142, 143]

LY6G5C Yes Testis, fetal liver/spleen/retina/heart/
thymus, MS lesions, germinal center B
cells, carcinoid lung

Unknown Hematopoietic cell differentiation No No [142, 143]

LY6G6C Yes Fibroblasts Unknown Filipodia functions No Yes [142, 143]

LY6G6D Yes Fibroblasts Unknown Filipodia functions No Yes [142, 143]

LY6G6E No Undifferentiated megakaryocyte-like
cells

Unknown α4β2 potentiator, cell adhesion and
migration

No Yes [105, 142]

LY6G6F Yes K562 acute myeloblastic leukemia cells GRB2, GRB7 Unknown No Predicted No [144]

LY6G6G No Unknown Unknown Unknown No Predicted No

LY6H Yes Exocrine and endocrine epithelial cells,
CNS

Unknown Unknown No Yes [145, 146]
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Table 3 Expression patterns, interacting factors and cellular functions of mouse Ly6/uPAR family proteins (Continued)

LY6I No Monocytes, granulocytes, CD19+ B cells,
thymocytes and T cells

Unknown Unknown No Yes [28, 147]

LY6K Yes Keratinocytes, squamous cell
carcinomas

JUND, FOSL1, RAS Invasive cell metastasis Yes Yes [148–152]

LY6L Yes Unknown Unknown Unknown No Predicted Yes

LY6M No Unknown Unknown Unknown No Predicted Yes

LYNX1 Yes CNS neurons α4β2 and α7 nAChRs nAChR modulator Yes Yes [25, 66, 73, 153]

LYPD1 Yes Airway epithelial cells, embryonic tissue,
CNS and PNS neurons

α4β2, α4β4, and α7 nAChRs α7 nAChR modulator, tumor
suppression

Yes Yes [103, 104, 154,
155]

LYPD2 Yes Unknown α4β2 nAChRs nAChR Modulator No Yes [105]

LYPD3 Yes Stratum spinosum keratinocytes, cancer
cells

α6β4, MMP14 Metastasis, EMT, wound healing No Yes [156–160]

LYPD4 Yes Unknown Unknown Unknown No Predicted No

LYPD5 Yes Stratum granulosum keratinocytes AP-1 Unknown No Yes [156, 161]

LYPD6 Yes Ubiquitously WNT3A Tumor suppression No Yes [162–164]

LYPD6B Yes Testis, lung, stomach, prostate AP-1 PKC signal transduction pathway No Yes [165]

LYPD8 Yes Unknown Unknown Unknown No Predicted Yes

LYPD9 No Unknown Unknown Unknown No Predicted Yes

LYPD10 No Unknown Unknown Unknown No Predicted Yes

LYPD11 No Unknown Unknown Unknown No Predicted Yes

PATE1 Yes Leydig cells, testicular germ cells,
prostatic epithelial cells principle cells,
spermatazoa,

INCA1 Spermatazoa/egg fusion and
penetration, spermatazoa motility

No No [29, 32, 166–168]

PATE2 Yes Spermatazoa, testicular germ cells,
neuronal tissue

nAChR nAChR modulator No No [29, 31]

PATE3 Yes Testis nAChR nAChR modulator No No [29]

PATE4 Yes Spermatazoa, prostatic apical epithelial
cells, spinal cord tissue

α7 nAChR nAChR modulator Yes No [29, 33]

PATE5 No Male reproductive organs Androgens, lumicrine testicular
factors

Unknown No No [29, 30]

PATE6 No Male reproductive organs Androgens nAChR regulator No No [29, 30]

PATE7 No Male reproductive organs Androgens Unknown No No [29, 30]

PATE8 No Male reproductive organs, skeletal
muscle

Androgens Unknown No No [29, 30]

PATE9 No Male reproductive organs Unknown Unknown No No [29, 30]

PATE10 No Male reproductive organs Androgens, lumicrine testicular
factors

Unknown No No [29, 30]
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Table 3 Expression patterns, interacting factors and cellular functions of mouse Ly6/uPAR family proteins (Continued)

PATE11 No Placenta α4β2 nAChR α4β2 nAChR regulator No No [29, 30]

PATE12 No Placenta Unknown Unknown No No [29, 30]

PATE13 No Male reproductive organs Androgens Unknown No No [29]

PATE14 No Luminal epithelium of seminal vesicles Androgens Unknown No No [169]

PINLYP Yes Unknown Unknown Unknown No Predicted No

PLAUR Yes Airway epithelial cells, trophoblast cells,
cancerous cells, HUVEC, pan-epithelial

uPA, Mac-1, caveolin, SERPINE1,
vitronectin, kininogen,
thrombospondin, α2-macroglobulin
receptor, MRC2, cation-independent
mannose 6-phosphate/insulin-like
growth factor II receptor

Fibrinolysis, matrix remodeling, cell
migration, growth factor activation,
integrin regulation, tumor cell
invasion, cell adhesion

Yes Yes [23, 170–185]

PSCA Yes Prostate basal cells, epithelial cells of
prostate, urinary bladder, kidney, skin,
esophagus, stomach, and placenta,
cortical cells

SNAI2, α4 nAChR Tumor suppression, oncogene, nAChR
modulator

Yes Yes [26, 57–59, 61,
150, 186–188]

SLURP1 Yes Keratinocytes, mucocutaneous and
aerodigestive epithelia, some C-fiber
neurons

α7 nAChR, KLF4 Tumor suppression, nAChR modulator Yes No [20, 76, 79, 94,
99, 189–192]

SLURP2 Yes Oral and epidermal keratinocytes α3 nAChR nAChR modulator, blocks apoptosis Yes No [99–102, 193]

SPACA4 Yes Spermatazoa Unknown Spermatazoa-egg binding/fusion No Yes [194]

TEX101 Yes Spermatazoa, cancerous tissues Progesterone, PLAU Spermatazoaatogenesis, spermatazoa-
egg interaction, protease suppressor

Yes Yes [151, 195–198]
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terminal GPI-anchoring sequence [57]. It was initially
identified as a prostate-specific cell surface antigen in
normal male tissues and found to be highly expressed in
human prostate cancer [58, 59]. Later studies have re-
vealed it to be more widely expressed. A genome-wide
association study of Japanese patients with gastric cancer
revealed that genetic variation in PSCA is associated
with susceptibility to diffuse-type gastric cancer [60].
Psca−/− mice are viable, and fertile, with similar rates of
spontaneous or radiation-induced primary epithelial
tumor formation as the wild-type mice. However, Psca
−/− mice display an increased frequency of metastasis
suggesting that PSCA may play a role in limiting tumor
progression, and deletion of Psca promotes tumor mi-
gration and metastasis [61].

GPI-anchored high density lipoprotein-binding
protein 1
GPI-anchored high density lipoprotein-binding protein 1
(GPIHBP1) is an endothelial cell protein expressed on
the luminal face of capillaries in brown adipose tissue,
heart, lung, and liver. GPIHBP1 binds high density lipo-
protein and provides a platform for lipoprotein lipase
(LPL)-mediated processing of chylomicron lipoprotein
particles which transport dietary lipids from the intes-
tines to other locations in the body. GPIHBP1 mutations
that affect its ability to bind LPL or chylomicrons are as-
sociated with chylomicronemia [62–64]. Gpihbp1−/−
mice cannot transport lipoprotein lipase to the capillary
lumen, resulting in mislocalization of lipoprotein lipase
within tissues, defective lipolysis of triglyceride-rich li-
poproteins, and chylomicronemia [62–64]. Defective
lipolysis causes reciprocal metabolic perturbations in
Gpihbp1−/− mouse adipose tissue and liver. The essen-
tial fatty acid content of triglycerides is decreased and
lipid biosynthetic gene expression is increased in adi-
pose tissue, while the opposite changes occur in the
liver [65].

Ly6/neurotoxin-1
As an allosteric modulator of nAChR function, Ly6/
neurotoxin-1 (LYNX1) serves as a cholinergic brake that
limits neuronal plasticity, balancing neuronal activity,
and survival in the adult visual cortex [25, 66–68].
LYNX1 also inhibits SRC activation, suppressing mucin
expression in the airway epithelium [69]. The LYNX1
gene is positioned in close proximity to SLURP2, lead-
ing to the mistaken idea that they are alternatively
spliced isoforms of the same gene, a theory which was
disproved recently [70]. LYNX1 is one of the genes
that has shown accelerated evolution in humans rela-
tive to other primates, correlating with the increased
brain size and complexity [71]. The juvenile brain ex-
hibits high plasticity which is severely restricted in

adulthood. Adult Lynx1−/− mice exhibited visual cor-
tex plasticity similar to that of juveniles, suggesting
that LYNX1 serves as a break for cortical plasticity
[68]. Using the mouse model, it was demonstrated
that LYNX1 plays a modulatory role in the aging
brain, and that soluble LYNX1 may be useful for
adjusting cholinergic-dependent plasticity and learning
mechanisms [72–74].

Secreted Ly6/urokinase-type plasminogen
activator receptor-related protein 1
Secreted Ly6/urokinase-type plasminogen activator
receptor-related protein 1 (SLURP1) is expressed in a
variety of cells including immune cells [75], sensory neu-
rons [76], and epithelial cells [77–80], and secreted into
plasma, saliva, sweat, urine, and tears [22, 81]. SLURP1
is downregulated in corneal neovascularization [82],
asthmatic lungs [83], Barrett’s esophagus [84, 85], malig-
nant melanomas [86], and squamous cell carcinomas
[87, 88]. Mutations or deletions in SLURP1 cause auto-
somal recessive palmoplantar hyperkeratotic disorder
‘mal de Meleda’ [78, 81, 89–93]. SLURP1 is structurally
similar to the snake and frog cytotoxin α-bungarotoxin,
and acts as a CHRNA7 (α7nAChR)-ligand, regulating
keratinocytes through cholinergic pathways [78, 94]. It
modulates signal transduction, activation of the immune
response, and cell adhesion, and blocks malignant trans-
formation [75, 79, 95–97]. SLURP1 is proposed to
modulate acetylcholine signaling through CHRNA7 [98].
We have documented that SLURP1 serves as an import-
ant immunomodulatory molecule at the ocular surface
by acting as a soluble scavenger of urokinase (PLAU)
[20–22]. Slurp1−/− mice develop signs of palmoplantar
keratoderma including elevated keratinocyte prolifera-
tion, accumulation of lipid droplets in the stratum cor-
neum, and defective epidermal barrier function
reminiscent of mal de Meleda. Slurp1−/− mice also dis-
play decreased adiposity, low plasma lipid levels, and a
neuromuscular abnormality (hind-limb clasping), sug-
gesting additional functions for SLURP1 [99].

Secreted Ly6/urokinase-type plasminogen
activator receptor-related protein 2 (SLURP2)
SLURP2 is expressed by human epidermal and oral kerati-
nocytes, from where it is secreted into sweat and saliva,
respectively [100]. SLURP2 expression is strongly induced
in psoriatic skin lesions possibly by IL22, and is blocked
by IFNG [70, 101]. SLURP2 blocks the effect of acetylcho-
line by binding CHRNA3 (α3nAChR), and delays kera-
tinocyte differentiation and prevents apoptosis [100].
Although the SLURP2 and LYNX1 genes are closely linked
leading to a mistaken idea that they are isoforms, it is now
clear that they constitute separate transcription units that
are differently regulated [70]. Slurp2−/− mice also develop

Loughner et al. Human Genomics  (2016) 10:10 Page 12 of 19



signs of palmoplantar keratoderma and neuromuscular
abnormality (hind-limb clasping) reminiscent of those
seen in Slurp1−/− mice [99, 102].

Ly6/Plaur domain containing 1
Ly6/Plaur domain containing 1 (LYPD1), also known as
LYNX2, is a prototoxin gene that is expressed in postmi-
totic central and peripheral neurons including subpopula-
tions of motor neurons, sensory neurons, interneurons,
and neurons of the autonomous nervous system [103].
LYPD1 is expressed at high levels in anxiety associated
brain areas and plays an important role in regulating anx-
iety by binding and modulating neuronal nicotinic recep-
tors [104, 105]. Ablation of Lypd1 alters the actions of
nicotine on glutamatergic signaling in the prefrontal cor-
tex, resulting in elevated anxiety-like behaviors [104].

Evolution of Ly6/uPAR family proteins
Ly6/uPAR family genes are conserved across species sug-
gesting that they are evolutionarily ancient. Organization
of the genes in this family in clusters on multiple chromo-
somes suggests that both gene duplications and transloca-
tions have played a role in their evolution. Comparison of
the mouse and human Ly6/uPAR family genes reveals that
while there are many orthologs, some Ly6 genes are only
present in the mouse. The Ly6 gene complexes on human
chromosomes 8, 19, 11, and 6 are syntenic with their
counterparts on mouse Chromosomes 15, 7, 9, and 17, re-
spectively, suggesting that these gene complexes were
already present in their common ancestor. There are no
human orthologs for the subcluster of murine Ly6 genes
Ly6i, Ly6a, Ly6c1, Ly6c2, Ly6a2, Ly6g, Ly6g2, and Ly6f on
Chromosome 15, and Pate10, Pate7, Pate6, Pate5,
Pate12, Pate11, Pate9, Pate8, and Pate14 on Chromo-
some 9, suggesting that these regions may have arisen
in the mouse through gene duplication after evolution-
ary divergence of these two species. What their func-
tions are in the murine neutrophils and epididymis,
respectively, where they are abundantly expressed, and

Tree Scale: 0.1

Fig. 2 Phylogram revealing the evolutionary relationship among
mouse (ms-) and human (hu-) Ly6/uPAR family proteins. The phylogram
was generated using the amino acid sequences in Clustal-Omega
web-based program [106, 107] (http://www.ebi.ac.uk/Tools/msa/
clustalo/). The display was generated using the methods described
[108]. The length of each branch from the most recent branch
point indicates the evolutionary distance, or the relative period of
time the protein has been in its current state. Known GPI-anchored
Ly6/uPAR family proteins are shown in red, and those secreted
(without GPI-anchor) are shown in green. Those predicted to contain a
GPI-anchor (but not yet experimentally proven) are in purple, and those
predicted to not contain a GPI-anchor sequence (but not yet
experimentally proven) are in black. Novel genes named in this
study are indicated with an asterisk (*)
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how they are compensated in the corresponding human
tissues, remains to be determined.
In order to evaluate the evolutionary relatedness of LU

family proteins, we generated a phylogram by multiple
sequence alignment of their amino acid sequences using
web-based Clustal-Omega software, and visualized it
with web-based software from Interactive Tree of Life
(Fig. 2) [106–108]. Where multiple isoforms exist, we
only used the sequence of the longest isoform. Analysis
of the phylogenetic relationship among human and
mouse Ly6/uPAR family proteins revealed that (i) hu-
man LY6K and mouse GML2 are the most ancestral Ly6
proteins with the longest unbranched streak in these
two species, (ii) human and mouse LYPD6 are the most
recent addition to the family closely followed by mouse
LY6C1 and LY6C2, (iii) most of the secreted family pro-
teins (with the notable exception of SLURP1 and
SLURP2) form a separate cluster distinct from the GPI-
anchored proteins, and (iv) several mouse PATE proteins
(PATE4, 5, 6, 7, 8, 9, 10, 13, and 14) have long un-
branched streaks suggesting that they have ancient ori-
gin and that the important function(s) that they serve
have not changed much (Fig. 2).

Concluding remarks
In this gene family update, we have summarized the
current literature on the organization, expression pat-
terns, functions, and evolution of human and mouse
Ly6/uPLAR family genes. In addition, we identified and
named many novel Ly6/uPAR family members. Consid-
ering that Ly6/uPLAR family members play critical roles
in regulating immunological and physiological responses
to infections and varying environmental conditions, it is
imperative that we understand them in greater detail.
Their involvement in regulating a wide range of func-
tions such as progression of inflammation, complement
activity, neuronal activity, angiogenesis, wound healing,
and cancer growth indicates that Ly6/uPAR family mem-
bers will be useful therapeutic targets. Additional insight
into (i) the biological functions of individual family pro-
teins, (ii) signaling cascades that regulate their expres-
sion and functions, and (iii) the identity of their
interacting partners is expected to herald new modalities
for diagnosis and treatment of diverse diseases.
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