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Abstract

The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo
radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As
this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for
therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development
and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal
models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced
leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation,
the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact,
combined with the molecular and physiological similarities it shares with man and its small size and high rate of
breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we
review relevant M. musculus inbred and F; hybrid animal models, as well as methods of induction of radiation-induced

myeloid leukemia. Associated molecular pathologies are also included.
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Introduction

Cancer diagnosis rates continue to rise as the population
of the USA ages. At the same time, post-therapy survival
rates are increasing due to advances in medical techno-
logy. Over half of the US population will be diagnosed
with cancer at some point in their lifetimes, and of these,
a further half will receive radiation therapy as part of
their treatment regimen [1,2]. Radiotherapy has a num-
ber of uses in the modern oncology tool kit. Radiation
can be administered as the only part of treatment or
more commonly in combination with other treatments
such as chemotherapeutic drugs, molecular targeted the-
rapy, or immunotherapy. Outside of cancer treatment,
radiotherapy is also routinely used to initiate immune
suppression for bone marrow, stem cell, and organ trans-
plantation [3]. However, this widespread use has its risks.
The exposure of healthy tissue to radiation as collateral
damage from radiotherapy can result in a variety of acute
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toxicities or chronic secondary malignancies and specific-
ally radiation-induced leukemias [4,5].

Rapid technological advances in radiation oncology
have provided a greater degree of targeted radiation de-
livery to tumor sites, reducing unnecessary exposure of
healthy surrounding tissues. This more accurate delivery
of radiation has the benefit of increasing maximum tol-
erated doses and increasing the therapeutic ratio [6,7].
Despite this, the very nature of tumor growth and com-
plex tumor/healthy tissue interaction makes it unfeasible
to completely avoid all collateral exposure and therefore
all potential subsequent malignancy. This fact calls for
the development of alternative biological therapies to
supplement technological solutions, in order to reduce
secondary toxicity and malignancy risks to the absolute
minimum.

Three potential classes of agents could be applied in
order to modulate damage to normal tissue. The first
class, radiation protectors, consists of agents given prior
to radiation exposure. The second, radiation mitigators,
would be given post-exposure (PE), but prior to the on-
set of symptoms, while the third, therapies, would be ad-
ministered after the onset of symptoms [8]. Only one
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agent, amifostine [9], is currently approved by the Food
and Drug Administration (FDA) to protect normal tis-
sues during irradiation. Amifostine falls only under the
first category, with intravenous administration generally
occurring a few minutes prior to radiotherapy. In ad-
dition, amifostine can lead to toxic epidermal necrolysis
and other side effects, making it a less than ideal choice
[10]. The government and medical research community
recognize that this single therapy is not sufficient. In
order to meet this need, the National Cancer Institute
(NCI), in collaboration with the National Institute of
Allergy and Infectious Diseases (NIAID), has proposed
an algorithm to be used in the selection of agents for
preclinical and clinical development aimed at decreasing
the adverse effects of cancer therapy, including radiation
[11]. The use of animal models to validate these agents
is a key part of meeting the requirements of this al-
gorithm. Therefore, a comprehensive description of the
animal models relevant to the adverse effects of radiother-
apy is of great utility to researchers in the field of pro-
spective treatment development. Williams and colleagues
have already extensively covered the selection of animal
models designed to mitigate and treat the more acute tox-
icities associated with radiation exposure [12]. The pur-
pose of this work is to provide an updated review of select
inbred mouse models for myeloid leukemia.

Review

Background

As a mammalian species with a short maturation time,
the laboratory mouse Mus musculus is one of the best
models available for the study of carcinogenesis and its
corresponding pathologies. Over time, the laboratory
mouse has undergone a significant evolution in its com-
plexity. As researchers continue to delve into its genome
and develop precise techniques to manipulate it, it has
gained the ability to mimic progressively more precise
aspects of the multifaceted disease, that is, cancer. The
modern researcher's arsenal contains murine models
that range from specific carcinogen-inducible tumors, to
xenograft models fully compatible with human neoplas-
tic cells, to humanized mice expressing human genes.
Genetically engineered mice (GEM) have now been im-
bued with the ability to accurately recapitulate the pa-
thophysiological and underlining molecular features of
many human cancers [13]. As a result, GEM have re-
placed many of the genetically homogenous inbred mice
once used in environmentally induced cancer studies.
With respect to their genetically engineered relatives,
older models often developed tumors at low frequencies
and with variable latencies. However, GEM specific to a
particular question of carcinogenesis are often still diffi-
cult to come by, are overly expensive, or have not yet
been described to an adequate extent. In addition, as
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GEM are characteristically designed to follow an exact
carcinogenesis progression path, their use precludes the
study of alternative mechanisms. Rather, inbred strains
allow for genome-wide surveillance for mutations and
genome rearrangements, allowing researchers to probe
all possible mechanisms. For these reasons, inbred strains
remain a cornerstone of in vivo cancer research. Despite
their flaws, inbred mice have been indispensible in the dis-
coveries of oncogenes and tumor suppressors, as well as
the preclinical assessment of the toxic or therapeutic ef-
fects of countless agents [14], discoveries critical to the de-
velopment of GEM.

In this review, we set out to identify inbred mouse
models of radiation-induced (RI) cancers, intended for
the assessment of efficacy towards interventions aimed
at protecting, mitigating, or treating these malignancies.
We have concentrated on models specific to myeloid
leukemia as this subtype has been identified as one of
the most common secondary cancers arising post radi-
ation therapy [5].

Inclusion criteria

The scope of this review is limited to murine models of
radiation-induced myeloid leukemogenesis. It is spe-
cifically focused on those cancers designed to induce fol-
lowing exposures to low-linear energy transfer (LET)
gamma and X-ray radiations using both high total dose
and high dose rate. Carcinogenesis induced from high-
LET radiation, genetically engineered mouse models,
and xenograft models are outside of the scope of this
work. We have also worked to exclude models requiring
supplemental treatment in addition to radiation in order
to induce carcinogenesis, although we will discuss the
results of such treatments where applicable to our mo-
dels. In order to maximize clinical relevance, we have
chosen to focus only on murine models that tightly mi-
mic the underlying molecular pathologies of each type
of cancer as observed in humans.

Radiation-induced leukemia

Leukemia was one of the first cancers recognized as a
radiation-induced malignancy in the field of radiation
biology. Prior to the introduction of any radiation safety
standards, many X-ray workers, mostly physicists and
engineers, developed leukemia after working near par-
ticle accelerators and other unshielded sources of ioni-
zing radiation. For a dangerously long period, however,
the correlation between radiation exposure and leukemia
incidence and mortality was merely anecdotal. Signifi-
cant evidence only began emerging in Life Span Studies
following cohorts of Japanese atomic bomb survivors
and patients receiving high doses of therapeutic radiation
for cervical cancers, tinea capitis, and ankylosing spon-
dylitis [5,15-20]. In a large study, Boice and colleagues
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established a sharp increase in leukemia incidence follow-
ing radiation treatment for the uterine cervix carcinoma
[21]. Data from the Chernobyl disaster on excess risk esti-
mates of leukemia in adults and children also began to
emerge over the last two decades, providing a far more
complete data set on age dependence, doses, and latencies
[22-25].

Despite vast differences in exposure scenarios, irradia-
tion dose rates and doses, and radiation quality compo-
nents, the analysis of these studies led to the identification
of salient features common to all ionizing radiation
(IR)-induced leukemias. In the adult population, acute
and chronic myeloid leukemias (AML and CML) are
the two most common radiation-induced cancers ob-
served [16,17,19,26-28]. Younger children, exposed be-
tween 5 and 9 years of age, appear to be more susceptible
to acute lymphocytic leukemia (ALL), while older children
are more likely to develop AML. Interestingly, the inci-
dence of chronic lymphocytic leukemia (CLL) does not
seem to be influenced by radiation [15]. Leukemia devel-
opment risk is highest during the first decade following
exposure. The risk then decreases over time but never
returns to baseline risk [16,17,22,27,29]. Some studies also
report sex-specific differences in relative leukemia type
and risk [17,19,22,26].

As valuable as epidemiological data is, the use of mouse
models alone cannot fully describe radiation-induced leu-
kemogenesis, and it certainly allows no room for the test-
ing of interventions. It is therefore imperative in order
to study mechanisms of induction, improve diagnos-
tics, and further the development of radiation protec-
tion and mitigation efforts. Multiple established murine
models currently exist: RF [30,31], SJL/J [32], CBA [33,34],
and C3H/He [35]. Table 1 summarizes the optimal induc-
tion method and associated myelogenous leukemia (ML)
frequencies.

RF mouse

The RF mouse was developed as a general-purpose stock
from A, R, and S strains at the Rockefeller Institute
[31,36,37]. Its propensity for radiation leukemogenesis
has been studied extensively by Upton and colleagues
[38]. Detonation experiments conducted by Furth and
colleagues in 1936 provide one of the earliest accounts
of leukemogenesis in this strain [39]. In the RF model,
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ML is induced with a single dose of ionizing radiation.
This has been proposed as a counterpart to human
AML, particularly due to the diagnosable tissue lesions
present during a prolonged preclinical period [31].

At 18-24 months of age, a 2%—4% background inci-
dence of myeloid leukemia is observable in RF mice
[40]. Exposure of 8-week-old RF males to 1.5 Gy increa-
ses lifetime ML incidence to about 40%, while in utero
and neonatal exposures paradoxically decrease ML in-
duction [30,41]. Dosing these males at 4.25-Gy ML in-
creases incidence to 50%—90%, with a latency period of
4—6 months [31,38,42]. An enlarged spleen and liver can
be seen to accumulate young myeloid cells from as early
as 12 weeks post exposure. Clinically, leukemia in RF
mice presents with infiltration of peribronchial areas,
lymph nodes, and gastrointestinal lymphoid organs. How-
ever, at the dose necessary to induce ML, the rate of
thymic lymphoma induction also increases to about 25%,
potentially interfering with accurate ML diagnosis and
confounding modeling of the human disease [31]. A sex
difference in susceptibility to thymic lymphoma (TL) and
ML was also demonstrated by Upton et al. RF females are
more susceptible to TL, while male mice are more likely
to develop ML [30].

Hayata et al. have reported that myeloid leukemia in
the RF model exhibits partial deletion of chromosome 2,
along with other genomic instabilities and loss of the Y
chromosome [43], in a manner similar to radiation-
induced leukemia in the SJL/] mouse [44]. The pro-
tracted latency of ML in RF mice correlates well with
human data. The peak incidence of leukemia occurred
5-10 years post exposure in both Japanese atomic bomb
survivors and children exposed to the Chernobyl disas-
ter, corresponding well with mouse latency [17,22,26,45].
However, the RF mouse model's utility is limited by its
propensity to present with mixed hematopoietic tumors
of myeloid leukemia and thymic lymphoma [30].

SJL/) mouse

The SJL/J strain, developed by Murphy in the 1960s,
is known for its high spontaneous frequency of reticu-
lum cell neoplasms (type B, RCN B) [46,47] occurring
roughly 380 days after birth in both males and females.
As the histological pattern of these RCNs presents si-
milarly to that of human Hodgkin's disease, this strain

Table 1 Induction of myeloid leukemia in mice with low-LET ionizing radiation

Mouse strain Age (weeks) Sex Dosage (Gy) Fractionation Latency  Spontaneous Induced Reference
(months) frequency (%) frequency (%)

RF (RF/J, RFM) 8 M 4.25 Single 4-12 2-4 50-90 [30,41]

SIV/) 8-10 F 3-35 Single 12 0 10-30 [31]

C3H/He 8-10 M 284 Single 1.5-18 <1 25 [32]

CBA (CBA/Ca, CBA/Cne, CBA/H) 12-15 M 3 Single 18-24 0.1-1 25 [34]
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has been proposed as an investigative model for this
cancer [48].

A single, whole-body exposure of 8-10-week-old fe-
male SJL/] mice to 3.0-3.5 Gy induces myeloid leukemia
in only 10%—-30% of treated animals within a year. How-
ever, Haran-Ghera et al. have also observed that expos-
ure to fractionated X-rays induces lymphosarcomas [48].
Consistent with AML diagnosis, leukemic infiltrations
are observed in the bone marrow, lymph nodes, spleen,
and liver, consistent with a diagnosis of AML [32]. The
frequency of developing radiation-induced acute mye-
loid leukemia (RI-AML) increases with the age at ra-
diation exposure up to 12 weeks. It has been proposed
that this increase in susceptibility is explained by the
development of the mouse's mononuclear phagocytic
system [49].

While radiation is sufficient to initiate RI-AML, this
complex, multiphase malignancy often requires the ad-
ministration of additional promoting factors in order to
fully recapitulate tumor development [50]. Preleukemic
cells, as well as the characteristic chromosome 2 deletions
described previously, are observed in the bone marrow of
the overwhelming majority of IR-treated mice, prior to the
clinical presentation of overt AML at 90-120 days [51,52].
However, boosting the relatively low radiation-only induc-
tion rate requires the administration of corticosteroids fol-
lowing irradiation. This increases RI-AML incidence to
50%-70% [32]. Coadministration of growth factors, espe-
cially colony-stimulating factor-1 (CSF-1), decreases la-
tency and increases frequency even further to 75% [50,53].
The significance of this particular factor is supported by
the fact that, 2—4 months prior to RI-AML onset, those
10%-30% of RJL/L mice that will develop solely radiation-
induced cancer have significantly elevated CSE-1 levels as
compared to those mice in which RI-AML fails to develop
or those that develop RCN B. The observation that
RI-AML cells in vitro synthesize significant amounts of
CSF-1 further supports the hypothesis that CSF-1 is ne-
cessary for leukemia progression [49].

The clinical presentation of RI-AML in the SJL/] mouse
closely resembles that of secondary leukemias observed in
man [32]. The development of AML has been reported
at high frequencies in Hodgkin's disease patients in re-
mission after radiation treatment and steroid regimens
[54,55]. This correlation between a Hodgkin's disease/
RCN B background state and the induction of RI-AML
afterwards makes SJL/J an extremely valid RI-AML mo-
del. These mice only develop the AML type of leukemia,
similar to irradiated Hodgkin's disease patients [56]. Ele-
vated circulating levels of CSE-1 have also been reported
in some neoplastic malignancies, including AML, and ap-
pear to be associated with poor prognosis [57-60], further
promoting the use of the SJL/] mouse in the study of the
CSE-1's role in cancer.
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C3H mouse

The venerable C3H strain was developed by Strong in
1920, from a cross of the Bragg albino mouse and the
DBA mouse. Strong generated this strain while specific-
ally selecting for the elevated incidence of mammary tu-
mors (MT). Ninety percent of unfostered pups, those
pups remaining with their birth mother postpartum,
develop mammary tumors by 11 months of age due to
transfer of mammary tumor virus (MTV) from the
mother's lactation. Fostering the offspring or transferring
fertilized ova to a mammary tumor virus-free surrogate sig-
nificantly reduces tumor development frequency [36,37].
However, the fostered C3H/He substrain has a high inci-
dence of spontaneous hepatomas later in life [35,61].

Three gray of whole-body X-irradiation in 8—10-week-
old male C3H/He mice induces myeloid leukemia in
23.9% of exposed animals, with myelomonocytic leuke-
mia being the most prevalent subtype. Dose-response
curves in C3H mice are similar to those in RFM and
CBA mice, with a proportional increased leukemia in-
duction frequency until a critical dose of around 3 Gy,
after which point the incidence rapidly drops off [33].
Yoshida et al. have also reported significant sex dif-
ferences with females being less susceptible to RI-ML.
Similarly to steroid-based promotion in SJL/J mice, the
administration of the synthetic glucocorticoid prednisol-
one following irradiation of C3H/He mice increases the
incidence of ML to 38.5% [32]. Suppression and promo-
tion of hematopoietic recovery is suspected as the mech-
anism of induction. Spontaneous incidence of leukemia
is less than 1% [35]; however, this rate can be entirely
eliminated by reducing the daily caloric intake to about
two thirds of the normal level. Interestingly, the incidence
of RI-ML can also be decreased to 7.9% when restriction
is started before 6 weeks of age or to 10.7% when restric-
tion is started post radiation exposure at 10 weeks of age
[62]. Caloric restriction has also been observed to promote
PE longevity via insulin pathway modulation [63]. Chronic
inflammation may also be implicated as an exacerbating
factor in the promotion of leukemogenesis. Yoshida et al.
demonstrated that the induction of chronic low-level in-
flammation by insertion of a cellulose acetate membrane
increases RI-ML incidence to 35.9% [64].

In the C3H/He strain, the partial deletion of chromo-
some 2 has been implicated in RI-AML development,
just as in RFM and SJL/] mice [43,65]. During the first
metaphase PE, as little as 24 h after irradiation, chromo-
some 2 deletions can be detected in the bone marrow of
the C3H/He mouse, suggesting that chromosome 2 dele-
tions act in the initiation stages of leukemogenesis [66].
The Ph' chromosome transformation, common in human
chronic myeloid leukemia, can be compared to these mur-
ine chromosome 2 aberrations in both incidence and dis-
ease specificity [67,68].
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CBA mouse

The CBA mouse, also developed by Strong in 1920, is a
cross between a Bragg albino female and a DBA male,
but selecting for a low mammary tumor incidence. In
the CBA/Ca substrain, males tend to have a shorter life-
span than their female counterparts [36,37]. Both the
CBA/Ca and CBA/H substrains are directly descended
from the original CBA mouse derived in the UK [69,70].

A 3-Gy gamma or X-ray total-body irradiation of 12-
week-old male CBA/H mice results in a 25% rate of
myeloid leukemia induction. This leukemia infiltrates
the sternal bone marrow, liver, and spleen, which serves
as a diagnostic endpoint [33,34]. The dose-response curve
of leukemia induction is curvilinear, implying a threshold
dose as in the models previously discussed. The fact that
leukemia is rarely observed in cases with high exposure
correlates with human epidemiological data [71,72].

Chromosome 2 (Chr2) aberrations have been noted in
these mice and correlated with myeloid leukemia de-
velopment, just as in the other models [70,73,74]. The
expansion of cells carrying Chr2 lesions is present in
20%-25% of irradiated mice and can be observed from
as early as 20 h PE to as late as 24 months [75]. Bouffler
et al., however, were not able to conclusively prove that
the induction and presence of an aberrant Chr2 clone
can accurately predict development of RI-AML in CBA
mice [76]. Aberrations on chromosome 4 were also re-
ported in about 50% of CBA/H mice diagnosed with
typical AML. Lyr2/TLSR5 allelic loss was identified as a
likely event in radiation-induced hematopoietic malig-
nancies, including myeloid and lymphoid mouse leu-
kemias, by Cleary et al. [77]. An 8% decrease in DNA
methylation, not observed in AML-resistant C57Bl/6,
has also been linked to RI-AML susceptibility in the
CBA/H strain [78].

The CBA mouse is presently the favored RI-AML mo-
del for human AML, for three main reasons. It has a
low spontaneous frequency of AML, has a mean latency
of 18 months, and closely resembles the human ma-
lignancy in terms of morphology [69,79]. In addition,
Dekkers et al. have suggested that the two-step muta-
tion model of RI-AML in CBA/H, as extrapolated from
X-ray and neutron exposure data, is useful in modeling
human RI-AML [80].

ML-associated molecular pathologies

As been discussed relative to the previously mentioned
strains, anomalies involving chromosome 2 in particular
are closely linked to the development of AML in the
mouse model (RF, C3H/He, CBA, and SJL/J]) [43,44,65].
Rodents have had particularly high levels of chromo-
somal recombination over evolutionary time, so deter-
mining the directly corresponding human chromosome
for a particular mouse segment is often a complex task
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[81]. Amongst the genes present on mouse Chr2 is the
Abl gene, found on Chr9 in humans and famous for its
fusion into the Bcr-Abl fusion protein in the Philadelphia
chromosome. The Philadelphia chromosome is usually as-
sociated with CML, and it can also be found in ALL and
other leukemic lineages [82,83]. Although aberrant activa-
tion of this gene should be considered, other sources of
Chr2-based oncogenesis are more likely. As the prototyp-
ical Chr2 aberration was best defined as a deletion, the
loss of a tumor-suppressing function was identified as a
more likely scenario in the oncogenesis process than acti-
vation of an oncogene [84]. In 2004, Cook and colleagues
identified the Sfpil gene, encoding the transcription factor
PU.1, in the 2-Mbp region commonly found deleted from
Chr2 in AML [85], after having previously established its
general location as a common region of loss of heterozy-
gosity (LOH) [84,86].

The Sfpil gene is a key factor in normal hemato-
poiesis, involved in the promotion, differentiation, and
regulation of every hematopoietic lineage. It is essential
for proper terminal myeloid cell differentiation (macro-
phage and neutrophil), as well as stem cell maintenance
[87-91]. Normally, lower levels of PU.1 lead to lympho-
cyte fates, while higher levels lead to myeloid fates in de-
veloping hematopoietic cells, although proper function
is required for successful development in both cases
[88,92]. PU.1 function is critical for leukemic transfor-
mations in mouse myeloid cells. However, its importance
in equivalent human transformations is still a subject of
active debate [85,93,94]. The PU.1 protein contains
DNA-binding and protein-protein-interacting domains.
The presence of regulatory phosphorylation sites is im-
perative for its function [95].

After loss of one copy via deletion of its local region
from Chr2, the second copy of Sfpil is often inactivated
via point mutations in its DNA-binding region [85,93].
Homozygous conditional knockdown of PU.1, leading to
expression levels at about 20% of wild type, induces AML
in mice inactivated from birth by 3-8 months of age [96].
Myeloid leukemia is also induced when inactivated in
adult mice [97]. The loss of the genomic region coding for
PU.1 is a common ‘second hit’" leukemogenesis event in
transgenic mice already expressing the oncoprotein PML-
PAR [98]. Upregulation of c-myc has also been reported
accompanying PU.1 deficiencies in AML cells [99]. Forced
expression of PU.1 at WT levels in promyelocytic leuke-
mia cells was demonstrated to inhibit clonogenic growth,
force monocytic differentiation, and induce apoptosis by
Cook et al. These findings support the hypothesis that the
suboptimal expression of PU.1 can be a key event in the
permission of leukemogenesis by blocking proper matur-
ation of the cell [85,91]. Peng et al. have suggested the
quantification of PU.1-deleted bone marrow cells as a sur-
rogate marker for RI-AML [100].
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Given these data, it would be tempting to declare PU.1
a tumor suppressor. However, other studies have shown
that overexpression of the very same transcription factor
can lead to other cancers, in particular erythroleukemias
[101]. It would be more correct to argue that PU.1 is a
critical transcription factor involved in the differentiation
of multiple hematopoietic lineages, the dysregulation of
which serves the development of many leukemic variants.

The human ortholog of PU.1 exists on chromosome
11 [91] and is expressed at low levels in most AML
cases, as might be predicted from the mouse models
[102]. However, inactivation by deletion of SPII is com-
paratively rare in man [93,94]. Cook et al. proposed that
other mechanisms of PU.1 deactivation take precedence
in human AML: the gene could be epigenetically si-
lenced or inactivated through interaction with a mutated
receptor (i.e., Flt3 cytokine receptor that is found in 25%
of human AML) or another protein [85]. The aberrant
expression of certain miRNAs, specifically miR-155, has
also been suggested as a cause of reduced PU.1 expres-
sion [103]. Interestingly, Finnon et al. recently showed
that the Flt3-ITD and Sfpil/PU.1 mutations are mutually
exclusive in murine radiation-induced AML, without
any overt phenotypic differences, suggesting that the two
are capable of playing an equivalent role in the oncogen-
esis process [104]. The group did not report on the ac-
tual levels of PU.1, so it remains plausible that PU.1
depression is still involved in these RI-AMLs.

It remains to be tested whether radiation is usually re-
sponsible for only one or both of the genomic events
commonly observed in RI-AML. Deletion of Sfpil on
Chr2 results in the mutation of the PU.1 DNA-binding
domain. It is suggested by present data that IR induces
the Chr2 deletions [52,65,100], but whether the deletion
results from direct DNA damage or from delayed gen-
omic instability remains to be proven [105-107]. In the
case of the direct alteration of the Sfpil allele seen in
RI-AML cells, however, radiation is not the most likely
candidate, as IR does not induce the point mutations ob-
served in Sfpil [85,93,99]. Evidence suggests that these
mutations are of spontaneous origin, as point mutations
are the most common of this type [108,109].

Ban and Kai have demonstrated that hematopoietic
stem cells (HSCs) surviving 3-Gy radiation are subjected
to replicative stress, contributing to accelerated senes-
cence. This decreases replicative fidelity and increases
the rate of mutation accumulation presumably including
point mutations in the remaining copy of the Sfpil
gene. Mathematical models fitted to experimental data
from cobblestone area-forming cells (CAFC) and colony-
forming unit-granulocyte/macrophages (CFU-G/M) on
ex vivo bone marrows revealed that irradiated HSCs cycle
as much as ten times more than those from unexposed
animals [109].
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The commonly accepted paradigm that HSCs are
the target cells of RI-AML was recently challenged by
Hirouchi et al. Instead, they concluded that AML stem
cells can arise from long-lived HSCs, short-lived multipo-
tent progenitors (MPPs), and even common myeloid pro-
genitors (CMPs) that have acquired self-renewal potential,
with the inactivation of Dusp2 on Chr2 being a likely con-
tributor. The cell surface phenotypes and gene expression
profiles of AML stem cells in their study very closely re-
sembled normal CMPs instead of HSCs [110].

In addition to the relevant Chr2 regions discussed
above, loci on Chr8, Chr13, and Chr18 have been identi-
fied as involved in leukemogenesis. On Chr18, the gene
Rbbp8, encoding CtIP, is upregulated in response to
X-ray exposure in RI-AML-sensitive CBA mice but not
the RI-AML-resistant strain C57BL/6. The human ortho-
log RBBP8 is a suspected tumor suppressor found on our
own chromosome 18. Deletions of Rbbp8 have been iden-
tified in many cancers including AML [111].

Conclusions

The ideal radiation-induced carcinogenesis mouse model
possesses a low spontaneous background frequency of
the desired malignancy, has a short latency period, does
not develop any other cancers besides the one to be
studied, and produces tumors nearly identical to the cor-
responding human cancer in onset, progression, and un-
derlying pathology. As a perfect model does not exist,
researchers are inevitably forced to compromise on
some of these features. It is generally more feasible to
compromise on features such as cancer latency and in-
duction frequency, as these can be compensated for by
study design and sheer subject volume. However, one
cannot compromise on the accurate emulation of molecu-
lar and pathophysiological features of human radiation-
induced malignancies, as these are the features that make
a model relevant in the first place. More advances must be
made towards the development of more accurate recapitu-
lations of human radiation-induced cancers. Radiation-
induced secondary cancers can still be difficult to discern
from primary tumors in humans due to unresolved ques-
tions about their respective molecular signatures. Identify-
ing and investigating these signatures in mouse tumors
following IR is a difficult challenge but brings great poten-
tial reward.

The field of radiation mitigation with respect to redu-
cing cancer rates in exposed individuals is still develop-
ing, with a few promising developments. Administration
of antioxidants appears to reduce the damage absorbed
from irradiation. Kuefner et al. observed a significant re-
duction of H2AX foci, markers of DNA damage, upon
in vitro preincubation of human lymphocytes with gluta-
thione before irradiation, but this effect did not extend
to post-irradiation incubation, nor is it clear whether this



Rivina et al. Human Genomics 2014, 8:13
http://www.humgenomics.com/content/8/1/13

effect might carry over to in vivo experimentation [112].
As mentioned previously, amifostine and its active me-
tabolite, WR-1065, have been shown to have some
promise differentially protecting healthy tissue during
radiotherapy when administered beforehand [9,113]. The
use of other micronutrients, such as DNA cofactors and
selenium, has also been suggested [114]. No clear agent
stands out yet, however, as the perfect agent to protect
against both radiation-induced toxicity and subsequent
cancer risk. As with all complex drug/disease interac-
tions, the use of mouse models to determine an effective
treatment is an imperative. If a compound can be con-
clusively shown to effect the myeloid leukemia rates in
these establish models, it would have an extraordinary
impact on the field of oncology.

This review presents an updated discussion of the
array of myeloid leukemia mouse models. The mouse
models presented are often a compromise on the back-
ground frequencies and rates of induction, but all dem-
onstrate strong molecular and phenotypic correlations
to salient features of the human cancers they are meant
to represent. These models provide a powerful tool for
testing the therapeutic benefit of candidate drugs against
radiation-induced carcinogenesis.
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