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Abstract

As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/
whole-genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon
computational prediction algorithms designed to prioritize potential functional variants for further study. A large
proportion of existing prediction algorithms are ‘disease agnostic’ but are nevertheless quite capable of predicting
when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms
relate to specific diseases and would therefore benefit from an approach that discriminates between functional
variants specifically related to that disease from those which are not. In a whole-exome/whole-genome sequencing
context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we
test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through
Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed
an overall reduction in the number of false positives identified using a disease-specific approach to functional
prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making
disease-specific predictions when prioritizing candidate variants in relation to specific diseases. A web-based
implementation of our algorithm is available at http://fathmm.biocompute.org.uk.
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Background
The average human exome harbours around 20,000 sin-
gle nucleotide variants (SNVs), of which approximately
half are annotated as non-synonymous single nucleotide
polymorphisms (nsSNPs) [1]. However, characterizing the
functional consequences of nsSNPs by direct laboratory
experimentation is both time consuming and expensive.
Therefore, computational prediction algorithms capable of
predicting and/or prioritizing putatively functional vari-
ants for further experimentation are becoming increas-
ingly important.
There is a plethora of computational prediction algo-

rithms capable of analysing the functional consequences
of nsSNPs [2]. One of these methods is the Functional
Analysis through Hidden Markov Models (FATHMM)
algorithm [3]: a sequence-based method which com-
bines evolutionary conservation in homologous (both
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orthologous and/or paralogous) sequences with ‘pathogen-
icity weights’, representing the overall tolerance of proteins
(and their component domains) to mutations. Using our
original weighting scheme (adjusted for inherited disease
mutations), we observed an improved predictive perform-
ance over alternative computational prediction algorithms
using a ‘gold-standard’ benchmark [4]. Nonetheless, these
algorithms, including our own, were not designed to dis-
criminate between nsSNPs influencing a specific disease
(disease-specific) and other putative disease-causing/func-
tional mutations (non-specific). For example, when tasked
with discriminating between cancer-associated and other
germline polymorphisms, these algorithms are capable of
identifying a high proportion of cancer-promoting muta-
tions. However, a large proportion of putative disease-
causing (non-neoplastic) mutations are misclassified as
having a role in carcinogenesis [5]. In both a clinical and a
research context, these tools are commonly used to inves-
tigate the aetiology of specific diseases. We therefore be-
lieve that there is a significant need for disease-specific
functional variant predictions.
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To the best of our knowledge, computational prediction
algorithms have been explored exclusively in a gene-
specific manner, e.g. predicting the effects of nsSNPs in
mismatch repair proteins [6,7]. The sole context in which
disease-specific predictions have been developed is in the
prediction of cancer-associated mutations [8-11]. In our
previous work, we adapted our original algorithm by
means of a cancer-specific weighting scheme and observed
improved predictive performances over alternative (cancer-
specific) computational prediction algorithms when pre-
dicting the functional consequences of cancer-associated
nsSNPs [12]. We have now extended this concept to a
novel and more comprehensive ‘disease-specific’ weighting
scheme to investigate whether such an approach is
capable of prioritizing nsSNPs based on 17 disease con-
cepts/categories.

Results
In order to assess the potential benefits of making disease-
specific predictions, we compared the performance of our
disease-specific weighting scheme with the performance
of our original algorithm (weighted for inherited disease
Table 1 Performance of computational prediction algorithms
and other disease-causing/neutral variants

Algorithm tp fp tn fn Accur

Musculoskeletal

SIFT 4,730 37,701 23,323 944 0.6

PolyPhen-2 5,278 44,047 34,859 714 0.6

FATHMM 5,902 51,596 29,202 201 0.6

Disease-Specific 4,120 3,123 77,675 1,983 0.8

Disease-Specific (20-fold) - - - - 0.8

Developmental

SIFT 845 41,586 23,983 284 0.5

PolyPhen-2 920 48,405 35,337 236 0.6

FATHMM 1,006 52,429 33,278 188 0.6

Disease-Specific 621 710 84,997 573 0.7

Disease-Specific (20-fold) - - - - 0.7

Endocrine

SIFT 3,084 39,347 23,443 824 0.5

PolyPhen-2 2,890 46,435 35,031 542 0.6

FATHMM 3,597 49,466 33,522 316 0.6

Disease-Specific 2,392 1,015 81,973 1,521 0.8

Disease-Specific (20-fold) - - - - 0.7

Metabolic

SIFT 10,731 31,700 21,913 2,354 0.6

PolyPhen-2 11,337 37,988 33,788 1,785 0.6

FATHMM 13,068 39,914 33,271 648 0.7

Disease-Specific 10,767 3,209 69,976 2,949 0.8

Disease-Specific (20-fold) - - - - 0.8
mutations) and two (generic) computational prediction
algorithms: SIFT [13] and PolyPhen-2 [14]. In our
analysis, all generic prediction algorithms were found to
be capable of discriminating between disease-causing
mutations (i.e. both disease-specific and non-specific
disease-causing mutations) and putative neutral poly-
morphisms (see Additional file 1: Supp. Info 1). How-
ever, our analysis showed that no distinction could be
made between disease-specific and other non-specific
disease-causing mutations when using these algorithms.
For example, generic algorithms are incapable of dis-
criminating between musculoskeletal-related variants
and other disease-associated variants, thereby leading to
high false positive rates (i.e. other disease-causing vari-
ants being incorrectly identified as being pathogenic
with respect to musculoskeletal-related disease). On the
other hand, it appears that a disease-specific approach
to functional prediction is capable of distinguishing be-
tween disease-specific and other disease-causing muta-
tions, thereby reducing the number of false positives
identified and improving the overall performance of the
algorithm. While our disease-specific approach is more
when discriminating between disease-specific variants

acy Precision Specificity Sensitivity NPV MCC AUC

1 0.57 0.38 0.83 0.70 0.24 0.64

6 0.61 0.44 0.88 0.79 0.36 0.71

6 0.60 0.36 0.97 0.92 0.41 0.73

2 0.95 0.96 0.68 0.75 0.66 0.93

0 0.92 0.94 0.66 0.74 0.63 -

6 0.54 0.37 0.75 0.59 0.12 0.56

1 0.58 0.42 0.80 0.67 0.23 0.63

2 0.58 0.39 0.84 0.71 0.26 0.59

6 0.98 0.99 0.52 0.67 0.58 0.90

4 0.97 0.99 0.49 0.66 0.55 -

8 0.56 0.37 0.79 0.64 0.18 0.60

4 0.60 0.43 0.84 0.73 0.30 0.67

6 0.61 0.40 0.92 0.83 0.38 0.71

0 0.98 0.99 0.61 0.72 0.65 0.94

9 0.97 0.98 0.60 0.71 0.63 -

1 0.58 0.41 0.82 0.69 0.25 0.64

7 0.62 0.47 0.86 0.78 0.36 0.72

0 0.64 0.45 0.95 0.91 0.47 0.80

7 0.95 0.96 0.78 0.82 0.75 0.95

6 0.94 0.95 0.77 0.81 0.74 -
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specific than generic computational prediction algorithms,
it would appear that this approach is also less sensitive.
This general trend of greater specificity/less sensitivity was
observed throughout the 17 disease concepts we tested
(see Table 1 and Figure 1—data shown for musculoskel-
etal, developmental, endocrine and metabolic disorders;
see Additional file 1: Supp. Info 2–18 for additional per-
formance comparisons pertinent to the remaining disease
concepts). These results illustrate the potential benefit of
using a disease-specific approach to functional prediction
when assessing nsSNPs in relation to specific diseases (by
reducing the number of false positives identified); how-
ever, further work is needed to reduce the number of false
negatives identified and improve sensitivity.
In the above, tp, fp, tn and fn refer to the number of

true positives, false positives, true negatives and false
negatives observed, respectively. Accuracy, precision, spe-
cificity, sensitivity, negative predictive value (NPV) and
Matthew's correlation coefficient (MCC) were calculated
using normalized numbers. Italic font corresponds to the
best performing method for a given statistic.
As our weighting scheme was derived using the same

mutation data used to assess our method (albeit using a
leave-one-out analysis), we recognize the potential for bias.
Therefore, we also performed a 20-fold cross-validation
analysis (see Table 1 and Additional file 1: Supp. Info
2–18). We observed no significant deviations in the per-
formance measures reported and therefore concluded that
Figure 1 Performance of disease-specific and generic computational pre
when tasked with discriminating between disease-specific mutations and other
the performance of our disease-specific approach is not an
artefact of over-fitting. We also recognize that most of our
algorithm's predictive power comes from our weighting
scheme, i.e. it is the weighting scheme that allows us to
differentiate between disease-associated variants and other
disease-causing mutations. Therefore, we also compared
our approach to a naive weighting scheme. Here, we used
our weighting scheme (omitting sequence conservation)
to derive a prediction score. Proteins, and their constituent
domains, with a higher proportion of disease-associated
mutations would predict all variants falling within them as
disease, and those with a higher proportion of other
disease-causing mutations/neutral polymorphisms would
predict all variants as neutral. Overall, we observed a simi-
lar performance to that of our algorithm (see Additional
file 1: Supp. Info 19–36). However, it should be noted that
a naive approach is incapable of reliably discriminating
between disease-associated mutations and other disease-
causing variants as the weighting scheme becomes more
balanced, whereas our disease-specific approach (which
incorporates sequence conservation for prediction) ap-
pears to be less susceptible to balanced weights.
In order to facilitate the replication of our work, we

have annotated SwissProt/TrEMBL disease variants
(Release 2014_06) with the disease concepts used in our
analysis and make this resource publically available at
our website (http://fathmm.biocompute.org.uk). Using this
dataset to train and test our algorithm, we observed similar
diction algorithms. ROC curves for computational prediction algorithms
germline variants (i.e. other disease-causing/neutral mutations).

http://fathmm.biocompute.org.uk
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performances to those reported above (see Additional
file 2).

Discussion
There is a plethora of computational prediction algorithms
available to predict the functional consequences of nsSNPs
[2]. However, these algorithms are not designed to distin-
guish between mutations related to a specific disease, or a
group of related diseases (disease-specific), and other puta-
tive disease-causing (non-specific) mutations. As the cost
of whole-exome/whole-genome sequencing falls, making
these methods more amenable to use in a research or clin-
ical context, the challenge of filtering true disease-causing
candidate variants from other putative functional variants
is likely to become increasingly important. In this work,
we assessed the potential benefits of making disease-
specific predictions (relevant to 17 disease categories)
using the Functional Analysis through Hidden Markov
Models (FATHMM) framework and observed an overall re-
duction in the number of false positives identified, thereby
leading to improved specificity over traditional algorithms.
However, we also observed an increase in the number of
false negatives identified and conclude that additional work
is needed to improve sensitivity and enhance the utility of
our disease-specific approach. Nevertheless, there is poten-
tial to extend this approach to more specific categories for
the purposes of enhancing clinical prediction.
An important consideration when evaluating the per-

formance of computational prediction algorithms is the
cross-validation dataset. Here, the performance of such
algorithms should be trained and tested using different
datasets (cross-validation). In order to alleviate the poten-
tial for bias in our results, we performed a 20-fold cross-
validation procedure across our 17 disease concepts. From
this analysis, we observed no significant deviations in the
reported performance measures and therefore conclude
that the performances observed were not an artefact of
our disease-specific weighting scheme.
One of the major limitations of our disease-specific

approach is that, in extreme cases, there is potential for
dominating pathogenicity weights which could bias or
exaggerate the effects of variants, e.g. when prioritizing
variants in proteins and/or domains which have very
strong associations with the disease concept under in-
vestigation. Here, the pathogenicity weights used could
dominate the underlying amino acid probabilities (used
to measure sequence conservation) and therefore bias the
prediction. For example, when these weights are biased to-
wards the disease concept, neutral polymorphisms falling
within diverse regions of a protein/domain would be classi-
fied as ‘damaging’ as opposed to being classified as ‘benign’.
As a consequence, our disease-specific models are best
suited as a whole-genome/whole-exome prioritization
method (hypothesis-free) and should be used with caution
when prioritizing variants in a gene-specific manner. In an
attempt to alleviate the potential effects of dominating
pathogenicity weights, measures of sequence conservation
are presented alongside our rankings so that spurious pre-
dictions can be assessed and ignored.
An alternative approach to our disease-specific weight-

ing scheme is to filter putative disease-causing nsSNPs
using the Gene Ontology [15]. However, this approach is
dependent upon protein annotations being made available
whereas our algorithm does not require prior information
on protein function. Furthermore, users adopting this
approach are required to select from a range of technical
phrases, e.g. ‘negative regulation of cellular macromolecule
biosynthetic process’ (GO: 2000113). In contrast, our
disease-specific models do not require any formal know-
ledge on GO terms and biological processes, just an un-
derstanding of which model/concept best represents the
disease under investigation. Our disease-specific models,
including a high-throughput web-based implementation
of our algorithm and a standalone software package, are
available at http://fathmm.biocompute.org.uk.

Methods
Predicting the functional consequences of nsSNPs
The procedure for predicting the functional consequences
of nsSNPs has been described in Shihab et al. [3]. In brief,
an ab initio hidden Markov model (HMM), representing
the multiple sequence alignment of homologous (both
orthologous and/or paralogous) sequences within the Swis-
sProt/TrEMBL [16] database, is constructed using the
HMMER3 [17] software suite. In conjunction, protein do-
mains from the SUPERFAMILY [18] and Pfam (Pfam-A
and Pfam-B) [19] databases are annotated onto the full-
length protein sequence. If the mutation falls within an an-
notated region, then the corresponding model is extracted
and used alongside our ab initio model. Next, our algo-
rithm combines sequence conservation, within the most
informative model (as measured by the Kullback-Leibler
divergence [20] from the SwissProt/TrEMBL amino
acid composition), with pathogenicity weights, repre-
senting the overall tolerance of the corresponding
model to mutations (Equation 1).

ln
1:0−Pwð Þ W n þ 1:0ð Þ
1:0−Pmð Þ W d þ 1:0ð Þ ð1Þ

In Equation 1, Pw and Pm represent the probabilities
for the wild-type and mutant amino acid residues, re-
spectively, whereas Wd and Wn represent the relative
frequencies of disease-associated and functionally neu-
tral nsSNPs mapping onto the corresponding model,
respectively. Here, we use inherited disease-causing nsSNPs
annotated as DMs (damaging mutations) in the Human
Gene Mutation Database (HGMD Pro 12.4 [21]) and

http://fathmm.biocompute.org.uk
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putative neutral polymorphisms from the SwissProt/
TrEMBL database [16] (Release 2013_04) to derive Wd and
Wn, respectively. The effect of our weighting scheme is as
follows: when using pure conservation-based prediction
methods, nsSNPs falling within diverse regions of the pro-
tein (or domain) are typically considered ‘neutral/benign’.
However, our weighting scheme assesses the tolerance of
the corresponding model (representing a protein or
domain) to mutation and then adjusts a conservation-
based prediction accordingly. For example, nsSNPs
falling within P53 (a well-established cancer gene) are
penalized according to the gene's intolerance to muta-
tion whereas nsSNPs falling within MHC (known to
contain hypervariable regions) are not penalized given
the gene's apparent tolerance to mutation.

Incorporating a disease-specific weighting scheme
In order to derive a disease-specific weighting scheme, the
phenotypes reported for inherited disease-causing nsSNPs
listed as DMs (damaging mutations) in the Human Gene
Mutation Database (HGMD Pro 12.4 [21]) were annotated
using natural language processing against the Unified
Medical Language System (UMLS [22]). These mutations
were then grouped into 1 (or more) of 17 different root
disease concepts, e.g. digestive disorders ([23]—see Table 2
Table 2 Summary of nsSNPs used in our disease-specific
mutation datasets

Dataset Number of
proteins

Number of amino
acid substitutions

Human Gene Mutation Database
(HGMD)

Blood 99 1,474

Blood coagulation 45 3,508

Developmental 188 1,199

Digestive 116 1,850

Ear, nose and throat 113 943

Endocrine 192 3,913

Eye 227 3,031

Genitourinary 166 3,031

Heart 247 3,743

Immune 75 1,293

Metabolic 485 13,797

Musculoskeletal 309 6,110

Nervous system 473 8,553

Psychiatric 163 747

Reproductive 88 883

Respiratory 44 775

Skin 164 3,183

SwissProt/TrEMBL

Putative neutral polymorphisms 11,601 37,488
for the complete list). For disease-specific predictions, our
original weighting scheme (see Equation 1) is replaced
with the relative frequencies of disease-specific mutations
and other non-specific disease-causing mutations/neutral
polymorphisms mapping onto the model, i.e. our patho-
genic training set consists of disease-causing mutations re-
lated to the disease concept whereas our neutral training
set comprises all other disease-causing mutations (not re-
lated to the corresponding disease concept) and putative
neutral mutations. This disease-specific weighting scheme
has the same effect as our original weighting scheme (i.e.
to penalize specific variants); however, this approach pe-
nalizes just those variants falling within disease-specific
susceptible proteins or domains and treats other disease-
causing mutations as neutral polymorphisms (with respect
to the disease concept under investigation).

Performance statistics
In accordance with published guidelines [24], the follow-
ing six parameters are used to assess the performance of
our disease-specific models:

Accuracy ¼ tpþ tn
tpþ tnþ fpþ fn

Precision ¼ tp
tpþ fp

Sensitivity ¼ tp
tpþ fn

Specificity ¼ tn
fpþ tn

NPV ¼ tn
tnþ fn

MCC ¼ tp⋅ tnð Þ− fn ⋅fpð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpþ fnð Þ tpþ fpð Þ tnþ fnð Þ tnþ fpð Þp

In the aforementioned data, tp and fp refer to the
number of true positives and false positives reported, re-
spectively, whereas tn and fn refer to the number of true
negatives and false negatives reported, respectively.
Receiver operating characteristic (ROC) and area under
the curve (AUC) analyses were performed using the
ROCR software suite [25].

Additional files

Additional file 1: Performance of computational prediction
algorithms. This file reports the performance of computational
prediction algorithms when tasked with discriminating between inherited
disease-causing mutations, disease-specific mutations and neutral
polymorphisms.

Additional file 2: Performance of computational prediction
algorithms using SwissProt/TrEMBL. This file reports the performance
of our disease-specific algorithm and two generic computational
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prediction algorithms: SIFT and PolyPhen-2, when tasked with
discriminating between disease-specific mutations and other
disease-causing mutations/neutral polymorphisms in SwissProt/TrEMBL.
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