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Abstract
Objective The causal associations of circulating lipids with Barrett’s Esophagus (BE) and Esophageal Cancer (EC) has 
been a topic of debate. This study sought to elucidate the causality between circulating lipids and the risk of BE and 
EC.

Methods We conducted two-sample Mendelian randomization (MR) analyses using single nucleotide 
polymorphisms (SNPs) of circulating lipids (n = 94,595 − 431,167 individuals), BE (218,792 individuals), and EC (190,190 
individuals) obtained from the publicly available IEU OpenGWAS database. The robustness and reliability of the results 
were ensured by employing inverse-variance weighted (IVW), weighted median, MR-Egger, and MR-PRESSO methods. 
The presence of horizontal pleiotropy, heterogeneities, and stability of instrumental variables were assessed through 
MR-Egger intercept test, Cochran’s Q test, and leave-one-out sensitivity analysis. Additionally, bidirectional MR and 
multivariable MR (MVMR) were performed to explore reverse causality and adjust for known confounders, respectively.

Results None of the testing methods revealed statistically significant horizontal pleiotropy, directional pleiotropy, 
or heterogeneity. Univariate MR analyses using IVW indicated a robust causal relationship between increased 
triglycerides and BE (odds ratio [OR] = 1.79, p-value = 0.009), while no significant association with EC was observed. 
Inverse MR analysis indicated no evidence of reverse causality in the aforementioned outcomes. In MVMR analyses, 
elevated triglycerides (TRG) were significantly and positively associated with BE risk (OR = 1.79, p-value = 0.041).

Conclusion This MR study suggested that genetically increased triglycerides were closely related to an elevated risk 
of BE, potentially serving as a biomarker for the diagnosis of BE in the future.
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Introduction
Esophageal cancer currently ranks as the sixth leading 
cause of cancer-related mortality characterized by a poor 
prognosis primarily attributed to early metastasis [1]. The 
5-year survival rate for this condition remains below 40% 
[2]. Barrett’s esophagus (BE) is a condition characterized 
by the transformation of the normal squamous epithe-
lium lining of the esophagus into specialized columnar 
cells. It represents the sole recognized precancerous 
lesion leading to the development of esophageal adeno-
carcinoma (EAC) [3]. Individuals diagnosed with BE face 
an elevated risk, ranging from 50 to 100 times higher, of 
developing malignant tumors compared to the general 
population [4]. Gastroesophageal reflux (GR) and body 
mass index (BMI) are known risk factors for esopha-
geal cancer [5]. Chronic inflammation and tissue injury 
resulting from GR contribute to the development of BE 
[6]. Furthermore, extensive research has elucidated that 
the presence of metabolic syndrome significantly elevates 
the susceptibility to BE [7], subsequently increasing the 
risk of EAC [8].

Metabolic syndrome is characterized by the co-occur-
rence of various metabolic abnormalities, including obe-
sity, insulin resistance, hypertension, and dyslipidemia 
[9]. There is a well-established correlation between meta-
bolic syndrome and an elevated susceptibility to a wide 
range of malignancies, such as renal cell cancer, liver can-
cer, esophageal cancer, endometrial cancer, and pancre-
atic cancer, among others [10]. According to Aaron P et 
al., each 1 kg/m2 elevate in BMI is linked to a 10% and 
20% elevated susceptibility of esophageal cancer (EC) and 
BE, respectively [11] Additionally, type 2 diabetes melli-
tus is also linked to EC [12] and BE [13] Dyslipidemia, a 
metabolic abnormality, is characterized by an imbalance 
in lipid profiles, including elevated levels of total cho-
lesterol (TC), low-density lipoprotein (LDL) cholesterol, 
and triglycerides (TRG), along with decreased high-den-
sity lipoprotein (HDL) cholesterol. Previous studies have 
elucidated that elevated LDL cholesterol elevate the sus-
ceptibility of biliary tract cancer, while TRG decreases 
the risk [14]. LDL cholesterol has also been associated 
with breast cancer [15] However, existing research on the 
relationship between circulating lipids and the risk of BE 
and EC has yielded conflicting results [16, 17] Observa-
tional studies are prone to inherent limitations such as 
residual confounding and reverse causality [14]. Large-
scale randomized clinical trials assessing the influence 
of circulating lipids on the risk of BE and EC are lack-
ing. Within this context, Mendelian randomization (MR) 
techniques emerge as a valuable and robust alternative. 
MR analysis explores causality between exposure and 
outcome by leveraging genetic variants that are associ-
ated with the exposure variable under investigation [18]. 
As the random assortment of allelic genes during meiosis 

remains unaffected by disease processes, MR analysis 
helps mitigate the biases encountered in observational 
research and external interference [19]. Therefore, the 
aim of this study is to employ two-sample MR (univariate 
MR) and multivariable MR (MVMR) to investigate the 
causal relationship between genetically predicted levels 
of circulating lipids, including LDL, HDL, TG, and total 
cholesterol, and the risk of developing BE and EC.

Methods and materials
Study design and data source
The study employed a two-sample MR method to explore 
the causal effects of circulating lipids on BE and EC out-
comes. The study design adhered to the three assump-
tions of MR design: (1) the instrumental variables chosen 
were strongly associated with circulating lipids, (2) these 
instrumental variables were not related to confound-
ing factor, and (3) these instrumental variables were 
associated with BE and EC only when the effects were 
mediated by the exposure. The summary data of single-
nucleotide polymorphisms (SNPs) was obtained from the 
IEU Open GWAS database (https://gwas.mrcieu.ac.uk, 
accessed on 20 January 2023). This database comprises 
245,394,206,850 genetic associations from 42,335 GWAS 
summary datasets, which were available for querying or 
download.

Table  1 provides detailed information on the SNPs 
related to the plasma lipids, BE, EC, and confounding fac-
tors (BMI and GR). The study utilized summary statistics 
obtained from various databases for different variables. 
The summary statistics for HDL cholesterol were derived 
from the IEU GWAS database by Willer CJ, with a sam-
ple size of 94,595 (ebi-a-GCST002223) [20]. The sum-
mary statistics for LDL cholesterol were sourced from 
the IEU GWAS database by Klimentidis YC, involving a 
sample size of 431,167 (ebi-a-GCST90002412) [21]. The 
statistical data summarizing the association of triglycer-
ide levels was acquired from the IEU GWAS database, 
also by Willer CJ, with a sample size of 94,595 (ebi-a-
GCST002216) [20]. All lipid GWAS data were adjusted 
for gender age, etc., as detailed in the original literature.

The summary statistics for total cholesterol originated 
from the GWAS database by Borges CM, and consisted 
of 12,321,875 SNPs (met-d-Total_C). For the dataset of 
BE, the summary statistics with a sample size of 190,190 
were obtained from FinnGen biobank (finn-b-K11_BAR-
RET). For the dataset of EC, the summary statistics with 
a sample size of 218,792 were acquired from FinnGen 
biobank (finn-b-C3_OESOPHAGUS). The related SNPs 
of confounders (GR [22] and BMI) were acquired from 
the IEU OpenGWAS database.

https://gwas.mrcieu.ac.uk
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Univariable MR
GR [23] and BMI [12] were major risk factors of BE and 
EC. The SNPs related to GR and BMI were acquired 
from the IEU Open GWAS database. The GR dataset 
consisted of 129,080 individuals with gastroesophageal 
reflux and 473,524 control individuals. The BMI dataset 
included 454,884 participants. To mitigate the potential 
influence of these confounding factors, the MR analysis 
was conducted following the exclusion of IVs associated 
with either of these conditions. A subsequent reverse 
MR analysis was performed to address potential biases 
due to reverse causality. For the selection of instrumental 
variables, a p-value threshold of < 1 × 10−5 was employed, 
considering the absence of SNPs meeting the conven-
tional GWAS criteria. Additionally, data clumping with 
parameters of R2 = 0.01 and kb = 5000 was utilized in the 
IV selection process.

Multivariable MR
A comprehensive MVMR analysis was employed to 
address the intercorrelations among four lipid traits. By 
utilizing MVMR, we were able to estimate the causal 
effects of multiple exposures on the outcome of inter-
est, while also facilitating the examination of the direct 
impact of individual exposures within the model [24]. 

The graphical representation of the study flow was illus-
trated in Fig. 1.

Statistics
SNPs of exposure that reached genome-wide significance 
(p-value < 5 × 10 − 8) and showed no linkage disequilib-
rium (LD) (R2 < 0.001 and clump distance > 10,000  kb) 
were selected as instrumental variables. We harmo-
nized the datasets for circulating lipids and BE/EC, while 
excluding SNPs with palindromic characteristics. The 
primary analysis was conducted utilizing the inverse 
variance weighted (IVW) method, which served as the 
main statistical approach. Additionally, supplemen-
tary analyses were performed employing the weighted 
median (WM) and MR-Egger methods, both imple-
mented within the TwoSampleMR framework [25]. The 
MR-Egger regression was used to evaluate pleiotropy 
by examining the intercept p-value [26]. To identify and 
remove horizontal pleiotropic outliers, we employed the 
MR-PRESSO method [27]. The heterogeneity of the MR 
analysis was assessed using Cochran’s Q test [28]. To esti-
mate the robust association of circulating lipids with BE 
and EC, we conducted a leave-one-out analysis. Associa-
tions with a Bonferroni-corrected p-value of IVW-based 
p-value < 0.0125 (0.05/4 risk factors) were considered 

Table 1 Characteristics of instrumental variable of exposure, outcome and confounders used for MR analysis
Type of 
variables

GWAS ID Year Trait PMID Author Consortium Population Sample 
size

Number 
of SNPs

Exposure ebi-a-GCST002223 2013 HDL cholesterol 24,097,068 Willer CJ NA European 94,595 2,418,527
ebi-a-GCST90002412 2020 LDL cholesterol 32,493,714 Klimenti-

dis YC
NA European 431,167 16,293,344

met-d-Total_C 2022 Total cholesterol NA Borges CM NA European 115,078 12,321,875
ebi-a-GCST002216 2013 Triglycerides 24,097,068 Willer CJ NA European 94,595 2,410,057

Outcomes finn-b-C3_OESOPHAGUS 2021 Esophageal 
cancer

NA NA NA European 218,792 16,380,466

finn-b-K11_BARRET 2021 Barret 
Esophagus

NA NA NA European 190,190 16,380,373

Confounders ebi-a-GCST90000514 2021 Gastroesopha-
geal reflux

34,187,846 Ong JS NA European 602,604 2,320,781

ukb-b-2303 2018 Body mass 
index

NA Ben 
Elsworth

MRC-IEU European 454,884 9,851,867

MR, Mendelian randomization; GWAS, genome-wide association studies; SNPs, single-nucleotide polymorphisms; NA, not available

Fig. 1 Flow chart of MR analysis in this study. MR, Mendelian randomization; BE, Barrett’s Esophagus; EC, esophageal cancer, GWAS, Genome-wide as-
sociation studies
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meaningful. Associations with p-values ranging from 
0.0125 to 0.05 were considered to indicate potential 
suggestive associations, implying a noteworthy but not 
definitive relationship between the variables under inves-
tigation. In order to avoid weak instrument bias (F < 10) 
in the two-sample model, we estimated the exposure 
strength of the instrumental variable using the approxi-
mation of the F statistic. The calculation of the F value 
and R2 adhered to the formula utilized in previous studies 
[29, 30]. We used the online tool mRnd to estimate the 
statistical power of the causal effect between exposure 
and outcomes (https://shiny.cnsgenomics.com/mRnd/) 
[31]. The statistical analyses described above were per-
formed using R 4.2.2 software with TwoSampleMR ver-
sion 0.5.6 and MRPRESSO version 1.0 package.

Results
Instrument variables
A total of 51, 74, 284, and 47 SNPs were identified as 
potential instrumental variables for TC, HDL, LDL, and 
TRG, respectively. We ensured that the statistical power 
for each MR analysis, as calculated by mRnd, was suffi-
cient (100%). For detailed information on the instrumen-
tal variables, please refer to the supplementary materials 
(Table S1–S4).

Univariable MR
As shown in Fig. Fig3, the analysis revealed a significant 
correlation between triglyceride levels and an elevated 
susceptibility to BE, indicating that higher triglyceride 
levels were associated with an increased risk of develop-
ing this condition (p-value = 0.009, odds ratio [OR] = 1.79, 

95% confidence interval [CI] = 1.16–2.75). However, no 
significant associations were observed between total 
cholesterol (p-value = 0.256, OR = 1.31, 95%CI = 0.82–
2.10), HDL cholesterol (p-value = 0.550, OR = 1.10, 
95%CI = 0.80–1.54), or LDL cholesterol (p-value = 0.250, 
OR = 1.18, 95%CI = 0.89–1.56) and the risk of BE using 
the IVW method (Fig. 2, Table S5). In addition, the analy-
sis did not reveal any significant associations between 
genetically predicted TC (p-value = 0.819, OR = 0.92, 
95%CI = 0.47–1.83), HDL (p-value = 0.341, OR = 1.27, 
95%CI = 0.78–2.07), LDL (p-value = 0.922, OR = 0.98, 
95%CI = 0.66–1.45), and TRG (p-value = 0.950, OR = 1.02, 
95%CI = 0.55–1.91) and the risk of EC. These findings 
suggested that genetically determined cholesterol and 
TRG levels did not significantly contribute to the devel-
opment of EC. (Table S6). Tests such as Cochran’s Q test 
(p-value > 0.05), MR Egger intercept test (p-value > 0.05), 
and leave-one-out analysis (p-value > 0.05) indicated 
no evidence of heterogeneity, directional pleiotropy, or 
robustness issues in both forward and reverse MR analy-
ses (Table 2, Table S7, Figures S1–S10). The inverse MR 
analysis demonstrated no causality between circulating 
lipids and the risk of BE and EC (Supplementary Table 
S8–S9).

Multivariable MR
To address the potential issue of shared genetic instru-
ments among circulating lipids, we conducted a MVMR 
analysis to elucidate the genetically predicted associa-
tion between circulating lipids and BE. The comprehen-
sive MVMR analysis, encompassing BMI and GR, shown 
a significant causality between elevated TRG levels and 

Fig. 2 Forest plot of causal associations between circulating lipids and Barrett’s Esophagus outcomes. LDL, low density lipoprotein; HDL, high-density 
lipoprotein
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an increased likelihood of BE (p-value = 0.041, OR = 1.79, 
95%CI = 1.03–3.122) (Fig.  3). However, no significant 
associations were observed between TC, LDL, HDL, and 
the risk of BE. We performed additional MVMR analy-
ses between TRG and other lipids, which yielded similar 
conclusions (Table S11). Furthermore, the results indi-
cated that plasma lipids were not linked to the risk of EC 
(Table S12, S13).

Discussion
To our knowledge, the present study made the first 
attempt to prove the causal relationship between circu-
lating lipids and the risk of BE and EC. Our study clari-
fied the convincing influence of circulating lipids on BE, 
which indicated that increased triglycerides elevated the 
risk of BE. Since no pleiotropy and heterogeneity were 
detected by several methods, the results were considered 
robust.

Triglycerides, which form a chylomicron complex com-
prising lipids derived from food and absorbed by the 
intestinal lymphatics, played a significant role in previous 
study [32]. Moreover, the conversion products of triglyc-
erides, such as lysophosphatidic acids, have been closely 
associated with tumor occurrence and development [33]. 
Specifically, lysophosphatidic acid has been implicated 
in mediating the progression of esophageal squamous 

cell cancer through the PI3K/Akt pathway [34]. Addi-
tionally, Akihiro et al. reported a significant causal link 
between hypertriglyceridemia and nodal metastasis of 
superficial esophageal carcinoma [16]. However, Xie et 
al. found no relationship between triglycerides and the 
risk of BE and EAC [17] It was important to note that 
inherent limitations in observational studies, such as 
measurement errors in lipid assessment, differences in 
participant demographics, and external confounding fac-
tors, can contribute to discrepant results [14] In contrast, 
MR analysis, employed in our study, was less susceptible 
to reverse causal effects and confounding factors [35]. 
To uphold the credibility and robustness of our findings, 
this study excluded SNPs related to BMI and GR, which 
were major confounding factors, and performed MVMR 
to address potential interactions among circulating lipids.

In this study, the GWAS statistics concerning lipid 
traits, BE and EC were retrieved from EBI GWAS data-
base. Using genetic variants as instruments to conduct 
MR analysis, this study assessed the relationship between 
four lipids and the risk of BE and EC. Contrary to previ-
ous study that the levels of triglycerides were not asso-
ciated with the risk of BE and EAC [17], our results 
suggested high levels of triglycerides had significantly 
relationship with BE, whereas no significant association 
was detected between LDL, HDL, and total cholesterol 
level and BE risk. Reverse MR analyses illustrated that 
there was no reverse causality between the levels of tri-
glycerides and BE risks. Furthermore, the MVMR results, 
which adjusted for BMI and other lipids, confirmed a 
significant causality between genetically elevated triglyc-
eride levels and an augmented risk of BE, which was not 
previously reported in the literature.

These outcomes were verified through various sensi-
tivity analyses, heterogeneity analyses, and pleiotropy 
analyses, while excluding weak instrumental variables, 
thus ensuring the robustness of the findings. Addition-
ally, we constructed an MVMR framework that adjusted 
for BMI, GR and other lipids to further confirm the sig-
nificant relationship between triglyceride levels and BE 
risk. However, there were three limitations to consider 

Table 2 The outcomes of sensitivity MR analyses of circulating 
lipids on Barrett’s Esophagus
Exposure MR-PRESSO IVW estimates MR-Egger plei-

otropy test
Global p-value Co-

chran’s 
Q

P-value MR-
egger 
intercept

p-
Val-
ue

Triglycerides 0.98 28.97 0.98 0.01 0.48
HDL 
cholesterol

0.40 74.47 0.43 -0.003 0.85

LDL 
cholesterol

0.28 297.29 0.27 -0.01 0.11

Total 
cholesterol

0.21 57.71 0.21 -0.01 0.65

MR, Mendelian randomization

Fig. 3 Forest plot of causal associations of MVMR analysis between circulating lipids and Barrett’s Esophagus outcomes
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in this study. Firstly, the genetic data used in this study 
was derived from European populations, and its appli-
cability to other populations might be limited [14]. Sec-
ondly, besides BMI and gastroesophageal reflux, there 
might be other potential confounders that could influ-
ence the causal associations identified in this study. The 
consolidating factors primarily arise from the pleiotropy 
of IVs. In instances where no statistical differences were 
observed in the pleiotropy analysis, we concluded that 
the IVs did not exhibit pleiotropy, indicating no associa-
tions with other phenotypes. Fortunately, the pleiotropy 
analysis conducted using the MR method did not yield 
statistically significant results, ensuring the accuracy of 
our findings. Lastly, due to limitations in the available 
database, we did not analyze the relationship between 
triglyceride levels and EAC, which was closely related to 
BE.

Conclusion
In this study, we utilized large-scale GWAS data to per-
form MR analysis, investigating the relationship between 
serum lipids and the risk of developing BE and EC. Our 
study provided compelling evidence that genetically 
determined elevated triglyceride levels were significantly 
associated with an increased risk of Barrett’s esophagus, 
as demonstrated by both UVMR and MVMR analyses. 
These findings hold great significance for the prevention 
of BE in future clinical practice, as they offer the poten-
tial to serve as pre-diagnostic markers. Furthermore, 
our research highlights the importance of regular moni-
toring of triglyceride levels for patients with esophageal 
diseases, such as gastroesophageal reflux, to mitigate dis-
ease progression resulting from prolonged high triglycer-
ide levels.

Supplementary Information
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