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Abstract 

Systematically predicting the effects of mutations on protein fitness is essential for the understanding of genetic dis-
eases. Indeed, predictions complement experimental efforts in analyzing how variants lead to dysfunctional proteins 
that in turn can cause diseases. Here we present our new fitness predictor, FiTMuSiC, which leverages structural, evo-
lutionary and coevolutionary information. We show that FiTMuSiC predicts fitness with high accuracy despite the sim-
plicity of its underlying model: it was among the top predictors on the hydroxymethylbilane synthase (HMBS) target 
of the sixth round of the Critical Assessment of Genome Interpretation challenge (CAGI6) and performs as well 
as much more complex deep learning models such as AlphaMissense. To further demonstrate FiTMuSiC’s robustness, 
we compared its predictions with in vitro activity data on HMBS, variant fitness data on human glucokinase (GCK), 
and variant deleteriousness data on HMBS and GCK. These analyses further confirm FiTMuSiC’s qualities and accuracy, 
which compare favorably with those of other predictors. Additionally, FiTMuSiC returns two scores that separately 
describe the functional and structural effects of the variant, thus providing mechanistic insight into why the variant 
leads to fitness loss or gain. We also provide an easy-to-use webserver at https:// babyl one. ulb. ac. be/ FiTMu SiC, which 
is freely available for academic use and does not require any bioinformatics expertise, which simplifies the accessibility 
of our tool for the entire scientific community.
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Introduction
Accurately quantifying the effect of genetic variants on 
the fitness of the encoded proteins is one of the open 
challenges in biology which, if resolved, would have a 
tremendous impact on the understanding and treatment 
of genetic diseases [1–3]. The experimental approaches 
commonly used to quantify variant effects include 

different mutagenesis experiments [4–7] and large-
scale exome screening approaches [8, 9]. However, these 
remain expensive and time consuming, and given the 
ever increasing amount of genetic data that is being gen-
erated, the number of variants of unknown significance 
(VUS) that are waiting to be characterized keep grow-
ing [10]. Moreover, the genetic bases of the majority of 
rare diseases are still not deciphered [11], and this is even 
more true for complex diseases such as cancer [12]. New 
complementary approaches are thus needed to interpret 
and classify these VUS and, more generally, to gain novel 
insights into these matters.

In the last two decades, many computational tools 
have been developed to predict the phenotypic effect of 
genetic variants [13–24]. They are mainly based on evo-
lutionary features combined using machine learning 

†Matsvei Tsishyn, Gabriel Cia have contributed equally to this work; Marianne 
Rooman and Fabrizio Pucci have contributed equally to this work.

*Correspondence:
Fabrizio Pucci
Fabrizio.Pucci@ulb.be
1 Computational Biology and Bioinformatics, Université Libre de Bruxelles, 
50 Roosevelt Ave, 1050 Brussels, Belgium
2 Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 
1050 Brussels, Belgium

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-024-00605-9&domain=pdf
https://babylone.ulb.ac.be/FiTMuSiC


Page 2 of 10Tsishyn et al. Human Genomics           (2024) 18:36 

techniques. The most recent predictors such as [14, 
22, 24] take advantage of the advent of deep learning 
approaches, as enough experimental data has become 
available to train complex models for fitness prediction 
[7]. These methods could in principle help accelerate the 
discovery of clinically relevant variants and their molecu-
lar effect, but their low accuracy and poor generalization 
properties are major obstacles for having a strong impact 
on clinical decision. In addition, black-box machine 
learning models do not contribute to improve our under-
standing of pathogenic mechanisms.

Currently, the gold standard to assess the performance 
of fitness prediction methods is the blind community-
wide experiment called Critical Assessment of Genome 
Interpretation (CAGI) [25–27], which evaluates predic-
tors on unpublished data. CAGI allows for an unbiased 
assessment of the methods as well as the identification 
of their strengths and weaknesses. Moreover, it provides 
guidelines on how to translate computational predictions 
into clinical practice.

In this paper we present our new method, FiTMuSiC, 
which we used in the recent CAGI6 experiment to pre-
dict the fitness of hydroxymethylbilane synthase (HMBS) 
variants. We begin with a presentation and discussion 
of our computational approach and of its performances 
in CAGI6. We then showcase additional results of our 
method on clinically relevant variants. Our results show 
that FiTMuSiC achieves very good performances when 
applied to unseen data, which demonstrates that simple 
linear combination models can actually perform as well 
as more complex deep learning-based models such as 
AlphaMissense [24].

Methods
Features
We briefly describe the features used by our method, 
which are of two kinds: structural and evolutionary. 
Structural features use the 3-dimensional (3D) structure 
of the wild-type protein as input. They include:

• Relative solvent accessibility (RSA). It is defined as 
the ratio (in %) between the solvent accessible surface 
area of a residue in its given 3D structure and in a 
Gly-X-Gly tripeptide extended conformation; it is 
computed by an in-house program [28].

• PoPMuSiC (PoP) [29]. This computational tool pre-
dicts the change in protein thermodynamic stability 
upon point mutations ( ��G ) using the 3D structure 
of the target protein as input. It is based on the for-
malism of statistical potentials [30], with the energy 
values and RSA used as features in an artificial neural 
network.

• MAESTRO (MAE) [31]. This tool also predicts the 
��G based on the protein 3D structure. It uses con-
tact potentials as features, as well as some biophysi-
cal properties of the mutated and wild-type residues 
such as hydrophobicity and isoelectric point.

• SNPMuSiC (SNP) [16]. It is a predictor of variant 
deleteriousness based on structural and evolutionary 
features. Its evolutionary part is the PROVEAN algo-
rithm [17], and its structural part consists of statisti-
cal potentials and RSA appropriately combined with 
artificial neural networks (ANN). We used here the 
structural part only, since PROVEAN is used by FiT-
MuSiC as a separate feature.

FiTMuSiC also includes four evolutionary features. To 
compute them, we generated a multiple sequence align-
ment (MSA) of the target sequence using JackHMMER 
[32] (with database UniRef90 [33], one iteration and an 
E-value threshold of 0.01). The evolutionary features are:

• PROVEAN score (PVS) [17]. It is a pure evolutionary 
tool that predicts the functional effect of variants. We 
used a re-implemented in-house version of the pro-
gram which has some small differences with respect 
to the original version. Namely, it uses the pairwise 
alignment of the wild-type with the homologous 
sequences to calculate the alignment scores of the 
variants, rather than realigning them for each vari-
ant.

• Conservation Index (CI) [34]. It is calculated from 
fi(a) and f(a), the regularized frequencies of amino 
acid a at position i in the MSA and in the full MSA, 
respectively, which are computed as: 

 where ci(a) and c(a) are the number of occurrences 
of a at position i and in the full MSA, respectively, 
m is the depth of the MSA and N its length. The 
pseudocount parameter θ is set to 0.01 and defines 
the strength of the regularization; 21 is the number 
of possible states (20 amino acids and 1 gap). The CI 
score is calculated as: 

 where A is the set of 20 standard amino acids.
• Log-odd ratio score (LOR) [35]. The log-odd ratio of 

observing the wild-type amino acid wt with respect 

(1)
fi(a) =

ci(a)

m
(1− θ)+

θ

21

f (a) =
c(a)

m× N
(1− θ)+

θ

21
,

(2)CI(i) =

a∈A

(fi(a)− f (a))2
1/2

,
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to the mutated amino acid mt at position i is defined 
as: 

• pyCoFitness score (PYF) [36]. This score is obtained 
through a method that infers a coevolutionary model 
from the MSA using a pseudo-likelihood maximi-
zation direct coupling analysis approach [37], and 
employs the inferred model to compute the change in 
fitness due to the variant.

Model structure and training
The FiTMuSiC model is a simple linear combination of 
the eight features listed above. The mathematical expres-
sion of the model is:

where αi ( i = 1, . . . , 9 ) are free parameters that were 
identified based on a training set of deep-mutagenesis 
scanning data on three proteins: SUMO-conjugating 
enzyme UBC9 (UBE2I), small ubiquitin-related modifier 
1 (SUMO1) and thiamin pyrophosphokinase 1 (TPK1) 
[38]. Structural features were computed using models 
from the AlphaFold Protein Structure Database [39].

The scale convention of FiTMuSiC values is the follow-
ing: a value of 1 means equal fitness for wild-type and 
mutant; a value of 0 or below means the mutant is not fit 
at all; a value larger than 1 means that the mutant is fitter 
than the wild-type.

Additional models submitted to CAGI6
In addition to FiTMuSiC, we submitted the predictions 
of two other models to the CAGI6 challenge. The first is a 
simple rescaling of the SNPMuSiC score (SNP):

where the numerical factors β1 and β2 were chosen to 
rescale the SNPMuSiC values and were identified on the 
fitness training set described in the previous subsection.

Although stability and fitness are imperfectly corre-
lated [40], we also submitted a prediction model based 
on a rescaling of the score of the thermodynamic stability 
predictor PoPMuSiC (POP):

where the parameters γ1 and γ2 were identified on the 
same training set as the other models. The ReLU func-
tions bound the output between 0 and 1.

(3)LOR(i) = log
fi(mt)

1− fi(mt)
− log

fi(wt)

1− fi(wt)
.

(4)

FiTMuSiC =α1RSA+ α2PoP+ α3MAE+ α4SNP+

α5PVS+ α6CI+ α7LOR+ α8PYF+ α9,

(5)SNP = β1 SNP+ β2,

(6)POP = −ReLU[−ReLU[γ1POP+ γ2]+ 1]+ 1,

Model interpretation
To give information about the molecular effect of vari-
ants, FiTMuSiC provides four scores in addition to the 
global fitness of the variants. The first is the RSA of the 
mutated residue, which provides information on its spa-
tial location in the 3D structure. The second is the z-score 
Z defined as:

where µ and σ represent the mean and standard devia-
tion over all mutations on the given protein, respec-
tively. Negative z-scores correspond to mutants that are 
less fit than average mutants; positive z-scores indicate 
mutants that are fitter than average mutants, with very 
positive values corresponding to mutants fitter than the 
wild-type.

The last two scores, Zstr and Zevo , give information 
about the extent to which the structural features (SNP, 
POP, MAE) and evolutionary features (CI, LOR, PVS, 
PYF) contribute to the global fitness of the considered 
variant. Defining the structural (STR) and evolutionary 
(EVO) contributions to the fitness as:

their z-scores Zstr and Zevo are expressed as:

Negative Zstr values correspond to mutations that desta-
bilize the structure more than average mutations; positive 
Zstr values indicate mutations that are less destabilizing 
than average mutations or are even stabilizing. Negative 
Zevo values correspond to mutations into residues that 
are rarely to never observed at that position across evo-
lution or, more precisely, that are evolutionary unfavora-
ble in the sequence context; positive Zevo values indicate 
mutations into residues that are evolutionary favorable.

Results
Predicting fitness of HMBS variants
HMBS, also known as porphobilinogen deaminase, is an 
enzyme involved in the heme biosynthesis pathway, and 
more specifically in the conversion of porphobilinogen 
into heme precursor hydroxymethylbilane [41]. Muta-
tions in this gene have been associated with acute inter-
mittent porphyria (AIP), which is a rare metabolic disease 

(7)Z =
FiTMuSiC− µ[FiTMuSiC]

σ [FiTMuSiC]
,

(8)STR =α2PoP+ α3MAE+ α4SNP,

(9)EVO =α5PVS+ α6CI+ α7LOR+ α8PYF,

(10)Zstr =
STR− µ[STR]

σ [STR]
,

(11)Zevo =
EVO− µ[EVO]

σ [EVO]
.
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with life-threatening neurovisceral attacks that require 
frequent hospitalization of patients [42]. As almost one 
third of HMBS variants annotated in the ClinVar data-
base [43] are VUS, saturation mutagenesis experiments 
using high-throughput yeast complementation assays 
have recently been performed to estimate the fitness of 
HMBS variants and better understand the pathogenic 
mechanisms leading to AIP [44]. This data was unpub-
lished at the time of the CAGI6 experiment and was used 
as blind fitness values to assess predictors.

Among the 5963 HMBS single-site missense mutations 
with experimental fitness values from [44], the CAGI6 
assessors discarded hyper-complementing mutations 
(with experimental scores above 1.36), leaving a final 
evaluation dataset of 5811 mutations [27]. Indeed, it has 
previously been reported by the authors of the experi-
ments that such variants displaying increased fitness in 
yeast assays could be mostly disadvantageous in human 
[38, 44].

We applied our prediction models FiTMuSiC (Eq. 
(4)), SNPMuSiC (Eq. (5)) and PoPMuSiC (Eq. (6)) to the 
HMBS target. We also report the results of the two other 
top-performing methods among the 11 teams participat-
ing in the challenge, i.e. CalVEIR and ELAPSIC (called 
team 10_5 and 5_1 in [27]). Additionally, we provide the 
results of six widely used methods for deleteriousness 
prediction, i.e. FATHMM [13], PROVEAN [17], DEO-
GEN2 [15], PolyPhen−2.0 [19], EVE [14] and MutPred2 
[23] as well as two recently developed deep-learning 
based predictors, Sequence UNET [22] and AlphaMis-
sense [24]. To ensure consistency with the metrics pro-
vided by the CAGI6 HMBS challenge, all methods were 
benchmarked on the same dataset of 5811 mutations. 
The performance of the predictors was assessed by three 
types of correlations (i.e. Pearson correlation, and Spear-
man and Kendall rank correlations), and the root mean 
squared deviation (RMSD). The results are given in 
Table 1.

Note that the current version of FiTMuSiC (available 
on our webserver) slightly outperforms the version used 
for the CAGI6 HMBS challenge due to a small imple-
mentation modification. Namely, we now consider the 
SNP and PVS terms separately (as described in Meth-
ods), whereas they were aggregated into a single term in 
the previous version. The Kendall, Spearman and Pearson 
correlations improved from (0.30, 0.43, 0.42) to (0.31, 
0.45, 0.45), respectively, between the first and second ver-
sions. However, to ensure the blind nature of the chal-
lenge, we presented in the table the performances of the 
older FiTMuSiC version.

Among CAGI6 participants, FiTMuSiC performs 
as well as the other two best performing predictors, 
ELAPSIC and CalVEIR with very similar performance 

metrics. CalVEIR shows the best results in rank-based 
metrics, ELAPSIC in Pearson correlation and FiTMuSiC 
in RMSD. These three predictors all perform significantly 
better than the other 8 teams participating in CAGI6 
[27]. They also perform significantly better than the other 
methods tested (FATHMM, PROVEAN, DEOGEN2, 
PolyPhen-2, Sequence UNET and MutPred2), except 
for EVE and AlphaMissense. We observe that FiTMu-
SiC outperforms EVE in rank-based metrics but not in 
Pearson correlation and that, conversely, FiTMuSiC out-
performs AlphaMissense in Pearson correlation but not 
in rank-based metrics. Overall, these five best perform-
ing methods display very comparable scores and their 
respective ranking depends on the metric considered.

We also wish to underline the good performances of 
the SNPMuSiC deleterious variant predictor [16], which 
only slightly underperforms the best methods. In con-
trast, PoPMuSiC [29], which predicts stability changes 
upon mutations, does not work so well. This is not sur-
prising given deleteriousness and fitness are very well 
correlated, while stability and fitness are less so. For 
example, all functional residues are highly important for 
fitness while very poorly optimized for stability [40].

The performance of the tested methods can be con-
sidered as good considering that the HMBS data was 
not seen by any of the methods. However, there is still 
room for improvement as the Pearson correlation coeffi-
cient of all methods is below 0.5. Note, however, that the 
noisiness of deep-mutagenesis datasets (with both ran-
dom and systematic errors) puts an upper bound to the 

Table 1 Fitness prediction results of the benchmarked methods 
on the 5811 variants used in the CAGI6 HMBS challenge [27]. The 
best score for each metric is indicated in bold

 The performances were taken from the assessors’ results for CAGI6 participants, 
while for the other methods we evaluated the performances ourselves. EVE’s 
predictions are available for only 5152/5811 variants; missing values where set 
to the median

Method CAGI6 Kendall Spearman Pearson RMSD

FiTMuSiC � 0.30 0.43 0.42 0.39

SNP � 0.27 0.39 0.38 0.43

POP � 0.15 0.22 0.24 0.44

ELAPSIC team � 0.30 0.42 0.43 0.43

CalVEIR team � 0.31 0.45 0.36 0.51

FATHMM 0.16 0.23 0.17 –

PROVEAN 0.21 0.31 0.30 –

DEOGEN2 0.22 0.32 0.20 –

PolyPhen-2 0.21 0.28 0.22 –

EVE∗ 0.29 0.42 0.43 –

Sequence UNET 0.21 0.30 0.30 –

MutPred2 0.25 0.37 0.34 –

AlphaMissense 0.32 0.46 0.41 –
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precision of the predictors which cannot be surpassed 
without overfitting.

Feature analysis and model interpretation
It is well known that enzymes exhibit an activity-stability 
trade-off: residues in catalytic regions are optimized for 
functional reasons and less or not at all for stability, while 
other residues are very important for protein folding and 
stability and play little to no role in function [40]. FiTMu-
SiC can help in distinguishing these functional and struc-
tural contributions. Indeed, it outputs the z-scores Zstr 

and Zevo (Eqs. 10–11) which inform us about the extent 
to which structural and/or evolutionary features contrib-
ute to protein fitness, and provides us with a molecular-
level understanding of variant effects. It also gives us 
information about the RSA of the mutated residues, and 
thus about their location in the protein.

We focused here on three functionally or structurally 
important residue groups of HMBS, which are structur-
ally represented in Fig. 1 and colored according to their 
average per-residue z-score values Zevo and Zstr . Paired 
Zstr and Zevo values of all single-site mutations are 

Fig. 1 Contributions of structural and evolutionary features to HMBS fitness, represented by Zstr and Zevo , respectively. Negative z-scores 
(indicating mutations less fit than average mutations) are in red, close to zero scores in white and positive scores (indicating mutations fitter 
than average mutations) in blue. a, b Catalytic region, with the catalytic residues K98, D99, R149, R150, R167, R173 and C261 shown in sticks, 
and the substrate in green; c, d Salt bridge partners E250 and R116 shown in sticks; e, f Cluster of the three buried hydrophobic residues V124, I186 
and L193 shown in sticks
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plotted in Fig. 2, with the mutations of the selected resi-
due groups highlighted.

The region around the catalytic site of HMBS is repre-
sented in Figs.  1a,b and 2a. The catalytic residues (K98, 
D99, R149, R150, R167, R173 and C261) were identi-
fied by aligning the sequences of the considered human 
HMBS and of Escherichia coli HMBS, and by mapping 
the seven catalytic residues of the latter [45] annotated 
in the Catalytic Site Atlas [46]. These residues are thus 
functionally important, well conserved and very specific. 
As expected, mutating them results in very negative Zevo 
values (between −2.41 and −0.59 ), which reflects drastic 
reduction or loss of function. In contrast, they contrib-
ute little to structural stability, as seen from the predicted 
Zstr values centered around zero (between −1.43 and 
+1.04).

The second region considered is the salt bridge 
between the negatively charged residue E250 and the 
positively charged residue R116 (Figs. 1c, d and 2b). It is a 
highly specific interaction that has been shown to play an 
essential role in the enzyme’s fold by molecular dynam-
ics simulations [44]. The Zevo and Zstr values of these 
two residues are predicted to be negative on the average 
( −1.41 and −0.43 respectively), indicating fitness reduc-
tion upon mutations. Zevo is negative for all mutations 
( ≤ −0.72 ), whereas Zstr is only negative on the average 
(between −1.53 and +0.37 ). The high specificity of the 
interaction gives a particularly strong evolutionary sig-
nal, whereas the stabilizing effect of salt bridges is less 
marked compared to other interactions.

Finally, the hydrophobic cluster of the three residues 
V124, I186 and L193 (Figs.  1e, f and 2c) located in the 
core of the protein is very important for the stability of 
the protein fold. It thus shows strongly negative Zstr val-
ues, with some exceptions that correspond to mutations 
from one hydrophobic residue into another. In contrast, 

this cluster plays no direct role in the protein’s enzy-
matic activity and, moreover, hydrophobic interactions 
have low specificity and are often substituted with other 
hydrophobic residues across evolution. This explains 
the large width of the Zevo distribution (between −1.52 
and +1.64 ), and its only weakly negative average value 
( −0.70 ). On the other hand, Zstr values are also sparse 
(between −3.05 and +0.38 ) but are more shifted towards 
negative values (average of −1.60).

Comparing the coefficients in Eqs. (8) and (9) when all 
features of the linear regression are normalized by their 
standard deviation, we found the contribution of the evo-
lutionary features to the final score to be about 3 times 
greater than that of structural features, which indicates 
that evolutionary terms hold a relatively larger predictive 
power. However, it is the combination of both contribu-
tions that leads to the highest precision and structural 
terms thus improve the detection of deleterious variants. 
For instance, most mutations of residue L244 have very 
low experimental fitness a display a largely negative Zstr 
but a positive Zevo . We postulate that the deleterious 
nature of these mutations has not been detected by evo-
lutionary features due to the relatively low frequency of 
leucine in the MSA at this position (about 0.02). Another 
advantage of the structural terms is that they are reli-
able on proteins or protein regions with low evolutionary 
information (resulting in low-depth MSAs regions), such 
as de novo designed proteins. Indeed, none of the struc-
tural terms rely on evolutionary information.

In summary, the combination of both structural and 
evolutionary terms makes it possible to interpret when-
ever the deleterious effect of a mutation is attributed to 
a loss of function or to a perturbation of the protein fold. 
Since evolution and structure are related, it is no surprise 
that we often observe correlated Zstr and Zevo values. 
However, this correlation is limited (Pearson correlation 

Fig. 2 Scatter plots of paired Zstr and Zevo values for all single-site mutations in HMBS. Mutations of a the catalytic residues K98, D99, R149, 
R150, R167, R173 and C261, b the salt bridge residues E250 and R116 and c the hydrophobic cluster residues V124, I186 and L193 are highlighted 
in purple
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of 0.40). As a matter of fact, there are a lot of counterex-
amples where Zstr and Zevo have opposite signs, as seen 
in Fig. 2. This reflects the fact that the evolutionary and 
structural components of fitness are complementary, and 
that combining them into a single model increases both 
its accuracy and interpretability.

Prediction of HMBS gain‑of‑function variants
Variants displaying an increased fitness compared to the 
wild-type, sometimes referred as gain-of-function (GoF) 
variants are known to be difficult to predict and to inter-
pret [47]. Furthermore, as pointed out above, very high 
fitness values in yeast assays tend to be deleterious in 
human, making their interpretation even more ambigu-
ous. FiTMuSiC, as well as the other assessed predictors, 
cannot be used to accurately detect GoF variants. How-
ever, we still note that the set of variants with experi-
mental fitness above 1.1 (about one tenth of all HMBS 
mutations) have both positive Zevo and Zstr values (0.51 
and 0.37, respectively). In addition, when comparing the 
average z-score of the GoF variant predictions, FiTMu-
SiC displays the highest value (0.54) among all tested 
methods.

FiTMuSiC application to HMBS variant pathogenicity 
and activity
Fitness predictors are expected to play a crucial role in 
the classification and interpretation of genetic variants 
by providing complementary information to the experi-
mental characterizations [48]. It has however to be noted 
that the experimental HMBS fitness values of the CAGI6 
challenge come from a deep mutagenesis experiment that 
uses functional complementation yeast assays, which 
cannot fully reflect the complex mechanisms underlying 
variants’ pathogenicity and activity.

In this context, we assessed all the predictors consid-
ered as well as the experimental yeast assay data [44] on 
their ability to distinguish clinically annotated pathogenic 
and benign variants in humans. To that end, we collected 
the 53 pathogenic or likely pathogenic variants in HMBS 
that are related to AIP and the 13 benign or likely benign 
variants from ClinVar [43]. The metrics we used to assess 
the methods’ performances are sensitivity, specificity and 
balanced accuracy (BACC), for which we used the default 
prediction thresholds provided by the methods (and 0.5 
for FiTMuSiC), as well as a threshold-independent met-
ric, the area under the receiver operating characteris-
tic curve (AUC-ROC). We reported all performances in 
Table 2.

We observe that FiTMuSiC predicts with very high 
accuracy the pathogenicity of the variants with a BACC 
of 0.94 and an AUC-ROC of 0.98 only slightly outper-
formed by AlphaMissense with a BACC of 0.95 and an 

AUC-ROC of 0.99. It performs better than all other com-
putational methods and also, notably, than the experi-
mental high-throughput fitness data obtained by yeast 
complementation assays to evaluate variant pathogenic-
ity. We found that some of the computational methods 
tested are heavily biased towards pathogenic variants, 
as for example PolyPhen-2 and FATHMM. This can be 
explained by the choice of the threshold values proposed 
by their authors. They have thus a very poor specificity 
and predict very few neutral variants. FiTMuSiC does not 
suffer from this bias and reaches almost perfect accuracy 
in identifying neutral variants. Note that EVE also shows 
good performances which are only slightly less accurate 
than FiTMuSiC.

Table 2 Performance on 66 HMBS variants with clear clinical 
annotations taken from ClinVar [44], using all predictors 
assessed as well as experimental fitness data obtained by yeast 
complementation assays [44]. The best score for each metric is 
indicated in bold

Method Sensitivity Specificity BACC AUC‑ROC

Experimental 0.81 0.92 0.87 0.92

FiTMuSiC 0.96 0.92 0.94 0.98

FATHMM 1.00 0.00 0.50 0.79

PROVEAN 0.96 0.77 0.87 0.87

DEOGEN2 1.00 0.23 0.62 0.93

PolyPhen-2 0.98 0.31 0.64 0.91

EVE 0.94 0.92 0.93 0.98

Sequence UNET 0.70 0.77 0.73 0.82

MutPred2 1.00 0.54 0.77 0.96

AlphaMissense 0.98 0.92 0.95 0.99

Table 3 Correlation coefficients between experimental activity 
on 35 HMBS variants measured in [49] and the fitness values 
obtained by the assessed predictors and by experimental yeast 
complementation assays [44]. The best score for each metric is 
indicated in bold

*EVE’s predictions are available for 34/35 variants; the missing value was set to 
the median

Method Spearman Pearson

Experimental 0.77 0.72

FiTMuSiC 0.53 0.85

FATHMM 0.53 0.57

PROVEAN 0.19 0.50

DEOGEN2 0.41 0.57

PolyPhen-2 0.38 0.53

EVE* 0.40 0.71

Sequence UNET 0.08 0.35

MutPred2 0.23 0.49

AlphaMissense 0.53 0.94
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As an additional verification of FiTMuSiC robust-
ness, we checked if it is able to predict the effect of vari-
ants on HMBS in vitro activity. We reported in Table  3 
the correlations between the results of the predictors 
or high-throughput experiments and the experimen-
tally measured activity of 35 variants described in [49]. 
These results show that FiTMuSiC performs very well. It 
even outperforms in Pearson correlation the experimen-
tal fitness data from [44] and is only outperformed by 
AlphaMissense.

FiTMuSiC application to human glucokinase
To further test the robustness of FiTMuSiC, we applied 
it to another blind test set containing experimental high-
throughput fitness data of single-site variants in human 
glucokinase (GCK). This enzyme plays a key role in insu-
lin secretion in pancreatic β-cells: it catalyzes the first 
step of the glycolysis by transforming glucose into glu-
cose-6-phosphate [50]. Inactivating GCK variants were 
related to maturity-onset diabetes of the young as well as 
to permanent neonatal diabetes mellitus [50, 51]. Hyper-
active GCK variants are also deleterious and lead to per-
sistent hyperinsulinemic hypoglycemia of infancy.

In order to shed light on the molecular effects that lead 
to these disorders, the GCK activity of 8570 single-site 
variants have been experimental assessed using func-
tional complementation yeast assays [52]. We used this 
set of variants as independent test set to assess the fitness 
predictors. To ensure homogeneity between this dataset 
and data provided for HMBS, we floored all negative fit-
ness values to zero and excluded all values with standard 
error exceeding 0.3, as was done in the experimental data 
from [44]. This gives a final number of 6862 missense 

mutations; note that the experimental data appears to be 
noisier on GCK than on HMBS, as experiments on the 
latter were repeated twice. We show the performances 
of FiTMuSiC and other computational tools on GCK in 
Table 4. FiTMuSiC is among the top ranked predictors on 
this additional test set, with performance metric values in 
line with those of the HMBS benchmark.

We also evaluated the ability of the methods to clas-
sify deleterious and benign GCK variants that are 
defined based on clinical annotations. For that purpose, 
we curated a set of variants in GCK from ClinVar [43] 
with clear clinical interpretation. This led us to a collec-
tion 69 pathogenic or likely pathogenic variants, and 3 
benign or likely benign variants. The very low number of 
benign variants and the bias of predictors towards del-
eterious variants make this test case relatively easy, and 
most methods thus reach very high scores: five methods 
have an AUC-ROC of at least 0.97 (Table 5). FiTMuSiC 
also shows good performance with a BACC of 0.89 and 
an AUC-ROC of 0.99. Due to the strong imbalance of this 
test set, we suggest to consider these results with caution.

It has to be noted that the use of experimental fitness 
data from complementation yeast assays to predict del-
eteriousness does not perform very well for GCK variants 
(Table 5). The BACC and AUC-ROC values are even lower 
than in the case of HMBS. Some reported pathogenic vari-
ants such as V62M, T65I and H137R, seem to be benign 
in the experimental fitness map. Their deleteriousness 
has been suggested to be related to effects such as modest 
structural instability which are not captured by the assay 
[52]. This observation underlines the importance of relia-
ble and robust prediction methods to complement experi-
mental data for annotation and interpretation of variants.

Table 4 Correlations between fitness values obtained by high-
throughput experiments using functional complementation 
yeast assays [52] on 6862 GCK variants and those predicted by all 
the methods assessed. The best score for each metric is indicated 
in bold

*EVE’s predictions are available for only 6414/6862 GCK variants; missing values 
where set to the median

Method Spearman Pearson

FiTMuSiC 0.49 0.40
FATHMM 0.39 0.30

PROVEAN 0.41 0.33

DEOGEN2 0.51 0.35

PolyPhen-2 0.36 0.23

EVE∗ 0.47 0.40

Sequence UNET 0.30 0.24

MutPred2 0.51 0.34

AlphaMissense 0.53 0.40

Table 5 Performance on 72 GCK variants with clear clinical 
annotations taken from ClinVar [43], using all predictors 
assessed as well as experimental fitness data obtained by yeast 
complementation assays [52]. The best score for each metric is 
indicated in bold

Method Sensitivity Specificity BACC AUC‑ROC

Experimental 0.59 1.00 0.80 0.732

FiTMuSiC 0.78 1.00 0.89 0.990

FATHMM 1.00 0.00 0.50 0.766

PROVEAN 0.84 1.00 0.92 0.976

DEOGEN2 0.97 1.00 0.99 0.995
PolyPhen-2 0.93 1.00 0.96 0.978

EVE 0.58 1.00 0.79 0.807

Sequence UNET 0.52 0.67 0.59 0.638

MutPred2 0.91 0.67 0.79 0.865

AlphaMissense 0.87 1.00 0.93 0.995
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Webserver
In order to make FiTMuSiC readily available to the sci-
entific community, we have developed an easy-to-use 
webserver at http:// babyl one. ulb. ac. be/ FiTMu SiC/. Users 
need to input a 3D structure of the target protein in one 
of three ways: 

1. Provide its PDB ID if it is available in the Protein 
Data Bank (PDB) [53]; the structure is automatically 
retrieved.

2. Provide its UniProt ID; the corresponding AlphaFold 
DB structure [39] is then retrieved.

3. Provide a personal structure in PDB format (.pdb).

Since FiTMuSiC provides results on a per-chain basis, 
users need to select which chain they want the results for. 
Note that FiTMuSiC only outputs the results of a single 
chain, but the structural components of the model take 
into account all the chains contained in the structure file 
when computing the fitness score. Therefore, we recom-
mend that users provide protein structures that corre-
spond to biological units, especially when dealing with 
multimers.

Once the chain has been selected and submitted, the 
computation starts. Depending on the length of the query 
protein and the depth of its MSA, users should expect the 
computation to be completed in a few minutes for short 
proteins to a few hours for very long proteins. Once the 
computation is done, a CSV file with the results is sent to 
the email address provided during the submission. This 
file contains the RSA of all residues in the protein and the 
predicted fitness scores for all possible single-site vari-
ants. The last four columns contain fitness score infor-
mation, i.e. the raw FiTMuSiC score and the z-scores Z , 
Zevo and Zstr (Eqs. 4, 7, 10, 11). More information about 
the webserver and its usage is available on the help page 
(http:// babyl one. ulb. ac. be/ FiTMu SiC/ help. php).

Conclusion
We presented here FiTMuSiC, our new computational 
model based on a combination of structural and (co)
evolutionary information, which predicts the impact of 
single-site amino acid substitutions on protein fitness. 
We applied it to predict variants in HMBS, one of the tar-
gets of the CAGI6 challenge. It was rated as one of the 
top three predictors by the CAGI6 assessors [27]. The 
strengths of FiTMuSiC can be summarized as follows:

• It is based on a simple model, which is less prone to 
overfitting and biases towards the training set than 
machine learning models with thousands of param-
eters. This allows for very good performances on 

blind, independent test sets as we have shown here 
for variants in HMBS and GCK.

• It retains interpretability by providing the Zevo and 
Zstr scores which allow distinguishing between vari-
ants that impact more on function or on stability.

• It is available through an easy-to-use webserver, 
which allows users to get FiTMuSiC results in a sim-
ple way even without bioinformatics background.

For all these reasons, FiTMuSiC is of interest to the large 
community of scientists interested in the prioritiza-
tion, classification and interpretation of genetic variants. 
Moreover, it represents a reliable, complementary and 
cheaper approach compared to experimental methods.
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