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Abstract 

Recent advances in next-generation sequencing (NGS) technology have greatly accelerated the need for efficient 
annotation to accurately interpret clinically relevant genetic variants in human diseases. Therefore, it is crucial 
to develop appropriate analytical tools to improve the interpretation of disease variants. Given the unique genetic 
characteristics of mitochondria, including haplogroup, heteroplasmy, and maternal inheritance, we developed a suite 
of variant analysis toolkits specifically designed for primary mitochondrial diseases: the Mitochondrial Missense Vari-
ant Annotation Tool (MmisAT) and the Mitochondrial Missense Variant Pathogenicity Predictor (MmisP). MmisAT can 
handle protein-coding variants from both nuclear DNA and mtDNA and generate 349 annotation types across six 
categories. It processes 4.78 million variant data in 76 min, making it a valuable resource for clinical and research 
applications. Additionally, MmisP provides pathogenicity scores to predict the pathogenicity of genetic variations 
in mitochondrial disease. It has been validated using cross-validation and external datasets and demonstrated higher 
overall discriminant accuracy with a receiver operating characteristic (ROC) curve area under the curve (AUC) of 0.94, 
outperforming existing pathogenicity predictors. In conclusion, the MmisAT is an efficient tool that greatly facilitates 
the process of variant annotation, expanding the scope of variant annotation information. Furthermore, the develop-
ment of MmisP provides valuable insights into the creation of disease-specific, phenotype-specific, and even gene-
specific predictors of pathogenicity, further advancing our understanding of specific fields.
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Introduction
Mitochondria, presented in all nucleated cells, gener-
ate adenosine triphosphate (ATP) through Oxidative 
Phosphorylation (OXPHOS) to provide energy for cel-
lular processes. Approximately 1,500 proteins have been 
found in mitochondria, most of which are transcribed 
and translated by nuclear genome genes (nDNA). How-
ever, 37 genes encoded by the mitochondrial genome 
(mtDNA) including 13 protein-coding mtDNA essen-
tial for the OXPHOS pathway, 22 mt-tRNA, 2 mt-rRNA 
[1]. Since the identification of pathogenic variants in the 
mitochondrial genome in 1988 [2] and the subsequent 
discovery of pathogenic variants in the nuclear genome 
encoding proteins required for mitochondrial function in 
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2000–2001 [3–5], over 350 gene causing primary mito-
chondrial diseases have been identified [6]. The diagno-
sis of mitochondrial diseases is widely recognized as a 
complex and challenging task that requires a compre-
hensive evaluation through biochemical, histochemical, 
and molecular-level assays. Despite great progress has 
been made in sensitivity of mitochondrial heteroplasmy 
detection using next-generation sequencing (NGS) tech-
nologies [7] such as whole genome sequencing (WGS), 
whole exome sequencing (WES) and RNA sequencing 
(RNA-seq), the interpretation of disease-associated vari-
ants from large-scale NGS data remains a challenge for 
clinicians [8]. Several annotation tools are available for 
variant interpretation in primary mitochondrial diseases, 
such as Annovar [9], Variant Effect Predictor (VEP) [10] 
and snpEff [11]. However, these tools are mostly used for 
genome-wide annotation but lack specificity for mito-
chondrial diseases due to the differences between mito-
chondrial and nuclear DNA. Mitochondrial annotation 
can be a challenging task due to their unique genetic 
characteristics, including haplogroup, heterogeneity, 
and matrilineal inheritance [12]. Fortunately, the com-
plete sequence length of human mitochondrial genome is 
only about 16.5 kb, and online resources such as HmtDB 
[13] and HmtVar [14] have almost annotated all possible 
mtDNA variants. These resources provide clinicians with 
efficient ways to identify and annotate pathogenic vari-
ants in mitochondrial DNA.

Identifying of disease-specific pathogenic variants from 
a large number of rare variants is another challenge for 
clinical diagnosis. Although various genome-wide patho-
genicity predictors, such as Polyphen-2 [15], SIFT [16], 
CADD [17], and PROVEAN [18] have been widely used 
to assess the potential damage of variants, they perform 
poorly in predicting mitochondrial-genome variants 
[19]. To overcome this issue, mitochondrial-genome 
pathogenicity predictors, such as MToolBox [20], APO-
GEE [21] and Mitoclass [22] have been developed. When 
analyzing the effects of rRNA variants on mitochondrial 
genomes, direct methods to determine their pathogenic-
ity are often lacking. In the absence of such an approach, 
Elson et al. [23] devised an indirect method called Het-
erologous Inferential Analysis (HIA) that can be used 
to predict the disruptive potential of a large number 
of mt-rRNA variants. These predictors exploit desir-
able features such as structural, conservation of genes, 
population allele frequencies, evolutionary conserva-
tion, tertiary structure, ribosomal RNA (rRNA) variants 
and biochemical analysis [24], but they also have their 
limitations. Recent studies have shown that it is possi-
ble to develop pathogenicity predictors for rare variants 
by training specific predictors on variant datasets, dis-
ease-specific features[25], specific genes [26], and gene 

families [27]. These studies yielded promising results 
that performed well in predicting the pathogenicity of 
rare variants. For instance, Majithia et al. used a pooled 
functional assay of human macrophages and supervised 
machine learning to identify PPARG missense vari-
ant known to cause dominant lipid dystrophy and type 
2 diabetes [28]. Also, Zhang et  al. [27] developed a dis-
ease-specific variant pathogenicity predictor called Car-
dioBoost to estimate the pathogenic probability of rare 
missense variants in hereditary cardiomyopathies and 
cardiac arrhythmias with AUCs of 0.91 and 0.96, respec-
tively. Even though training specific pathogenicity predic-
tors for each subtype of primary mitochondrial disease 
are not feasible due to variants scarcity, Zhang et al. [29] 
recently developed a random forest predictor that esti-
mates the pathogenicity of rare nonsynonymous variants 
causing abnormal eye phenotypes. Their study showed 
that the phenotype-specific pathogenicity predictor 
could significantly improve accuracy, reduce the cost of 
pathogenic variants identification, and directly identify 
pathogenic phenotypes of candidate variants, providing 
opportunities to develop specific pathogenic predictors 
for primary mitochondrial diseases.

In this study, we developed a suite of variant analysis 
toolkits specifically designed for primary mitochondrial 
diseases: Mitochondrial Missense Variant Annotation 
Tool (MmisAT) and the Mitochondrial Missense Variant 
Pathogenicity Predictor (MmisP). MmisAT is an annota-
tion tool that rapidly screens missense variants related to 
mitochondria in the nuclear genome from Variant Call 
Format (VCF) file and provides comprehensive annota-
tions for variants [30], which facilitates the interpreta-
tion of variants associated with primary mitochondrial 
diseases. MmisP predicts the pathogenicity of rare mis-
sense variants in primary mitochondrial diseases using 
Logistic Regression algorithm and well-curated disease-
specific datasets. Our tool outperforms in distinguishing 
benign variants from pathogenic ones, prioritizing highly 
disease-associated variants, as well as selecting variants 
based on stratified clinical outcomes. In conclusion, our 
study not only provides a practical tool for the study and 
diagnosis of primary mitochondrial diseases, but also 
offers an opportunity to discover novel disease-causing 
genetic variants.

Materials and methods
A detail description of the data collection, model devel-
opment, and validation procedures can be found in the 
Additional file  1. In brief, we developed MmisAT and 
MmisP to estimate the pathogenicity of rare missense 
variants that closely associated with primary mitochon-
drial disease.
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MmisAT was primarily designed to annotate 1448 
missense variants in mitochondria by filtering out other 
genes and variants. To obtain authoritative annotation 
on representative transcripts of variants, we defined the 
Matched Annotation by NCBI and EMBL-EBI (MANE) 
transcripts for each gene. We then collected and collated 
a total of 349 annotations divided into six categories: 
Basic annotation, Pathogenicity predictor score, Allele 
frequency, Tissue expression, Amino acid property and 
Mitochondrial-specific annotation. Although most anno-
tations were from different sources, we extracted 30 new 
mitochondria-specific annotations from the physiologi-
cal and functional characteristics of mitochondria. These 
new annotations helped to improve the interpretation 
of variants. All annotations could be divided into three 
categories based on the data type: integer, Boolean, and 
continuous. The annotations based on the three levels of 
variants, genes and transcripts, clearly show the impact 
of variants (Additional file 4: Table S1). Finally, we con-
structed MmisAT using python code and a Variant 
Annotation Tool (VAT) based on the hg19 genome build.

To build and validate the MmisP model, we collected 
data from ClinVar [31], VariSNP [32] and literature 
resource. The data for all training and testing sets were 
limited to 321 genes associated with mitochondrial dis-
ease and had to be missense variants of these genes. 
Variants in the training set Vari_Train are derived from 
ClinVar (prior to October 2019) and VariSNP, which has 
a total of 3872 variants and a one-to-one ratio of benign 
to pathogenic variants. Vari_Train ended up involving 
only 258 genes, because some of the genes did not have 
variants of the missense type. The Vari_TestUnbalance 
testing set was derived from ClinVar (From October 2019 
to October 2022), which contained 677 benign variants 
and 281 pathogenic variants. After removing the vari-
ants from Vari_TestUnbalance that are missing any of the 
predictor disease scores, you get Vari_TestBalance, which 
contains 256 benign variants and 239 pathogenic vari-
ants. Vari_TestThreshold is obtained by leaving the vari-
ants in Vari_TestUnbalance that have both REVEL and 
M-CAP pathogenic scores, and it contains 294 benign 
variants and 277 pathogenic variants. To compare the 
performance of the predictor in widely studied genes, we 
obtained the variant set Vari_Test4Gene for four genes 
(POLG, SLC19A3, PDHA1, ETHE1) through a literature 
search, which contained 21 benign variants and 23 path-
ogenic variants. There is no overlap between the testing 
set and the training set (Additional file 2 and 3).

Our model consists of 115 features to measure patho-
genicity. To determine whether mitochondria-related fea-
tures could improve the model performance, we selected 
a subset of 85 features for further validation. To increase 
the generalization ability of the model, we processed all 

features for missing values and performed normalization. 
We evaluated six classification algorithms in machine 
learning and applied nested cross-validation to select the 
best algorithm. We used an internal fivefold cross-valida-
tion loop to optimize the hyperparameters of each can-
didate classification algorithm. The mean accuracy and 
standard deviation of Logistic Regression were calculated 
in an external cross-validation loop (cv = 10). Logistic 
Regression assumes the data follows a Bernoulli distri-
bution and uses gradient descent to solve the maximum 
likelihood function for the parameters to achieve binary 
classification. After selecting of Logistic Regression as the 
base classifier, we conducted Logistic Regression training 
for each primary mitochondrial disease using the entire 
training variant set to construct the MmisP prediction 
model (see Additional file 1).

In order to comprehensively evaluate the performance 
of MmisP and other predictors, we introduced 12 evalua-
tion metrics. To assess the applicability of MmisP to Vari-
ant Interpretation Guidelines, we used two testing sets 
(Vari_Test4Gene and Vari_TestThreshold) to compare 
with other tools at defined gene range and threshold. To 
explore the experience of using MmisP in a real environ-
ment, we also built simulated exomes containing "causa-
tive" disease-causing variants. The idea is to search for 
new disease-causing variants (321 genes) and newly dis-
covered disease-causing variants of genes associated with 
mitochondrial disease, then process the exome of ran-
domly selected healthy individuals in the 1000 Genome 
Project (1000G) and finally, place the found variants into 
the exome. Each simulated exome contained about 400 
variants, and there was a "causative" disease-causing vari-
ant in each exome.

Result
Overview of MmisAT and the impact of MmisP design 
on its performance
MmisAT successfully annotated 13 mtDNA, 321 
nDNA with evidence of pathogenicity, and 1127 nDNA 
whose expression was localized within the mitochon-
dria (Table  1). The corresponding transcript numbers 
were 13, 1563, and 5366, respectively (Table 1). Notably, 
MmisP features were selected from the MmisAT annota-
tion (Fig. 1).

Table 1 Range of genes and transcripts covered by MmisAT

Total Gene/
Transcript

Protein-coding 
mtDNA

Disease nDNA Location nDNA

1461 13 321 1127

6942 13 1563 5366
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MmisAT can handle protein-coding variants from both 
nuclear DNA and mtDNA and generate 349 annotation 
types across six categories (Additional file  4: Table  S1). 
It processes 4.78 million variant data in 76 min, making 
it a valuable resource for clinical and research applica-
tions (Additional file 7: Figure S1). To explore the factors 
affecting the performance of MmisP, we generated differ-
ent models and compared their performance on testing 
datasets. Using Vari_Train, we established a supervised 
learning classification algorithm to obtain the optimal 
predictive model for mitochondrial diseases. Although 
all models performed well with an accuracy rate of over 
70% (Table  2), the accuracy metric alone is insufficient 
to reflect the generalization ability of the model due 
to the uneven characteristics of Human Whole Exome 

sequencing data. Therefore, we adopted comprehensive 
evaluation metrics such as Recall, Precision, F1 Score, 
Matthew Correlation Coefficient (MCC), and Area Under 
the Curve (AUC) to assess the performance of each algo-
rithm model. AdaBoost and Logistic Regression showed 
high Recall rates, both exceeding 80%, while KNeighbors 
and Decision Tree performed poorly, with recall rates of 
71.08% and 68.90%, respectively. Random Forest had the 
highest accuracy rate of 82.75%, indicating a low proba-
bility of misclassifying benign variants as disease-causing 
variants when using this algorithm. Although Logistic 
Regression generated the highest F1 score, it was only 
0.02% higher than AdaBoost. The MCC values for Logis-
tic Regression, Random Forest and SVM were all greater 
than 0.7, indicating that these three algorithms could be 

Fig. 1 Workflow for MmisAT and MmisP. Left is MmisAT, right is MmisP
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compared to REVEL [33] and M-CAP [34] at the recom-
mendation threshold of 75% (as detailed below). How-
ever, the AUC values for KNeighbors and the Decision 
Tree were both less than 0.8, which was inconsistent with 
our expectations for binary models.

The features used in our model exhibit different data 
dimensions and types, and some features may contain 
redundant information. However, since MmisP focuses 
on missense variants in mitochondrial diseases, the num-
ber of features has little impact on computational time 
and resource consumption. To evaluate whether features 
related to mitochondrial function could improve model 
performance, we constructed six algorithm models using 
excluded feature subsets (excluding  mitochondrial-spe-
cific annotations) under the same training conditions. 
With the exception of Random Forests (which divide 
nodes by randomly selecting features, so that there may 
be no significant change in performance for highly lin-
early correlated features), the performance of all mod-
els declines. In particular, accuracy and precision have 
declined by about 1%, and other metrics have also 
changed to varying degrees (Table  3). Given the advan-
tage of AUC, we ultimately chose Logistic Regression 
with a value greater than or equal to 0.9 (0.904, 0.900) to 
build MmisP. We also use the learning_curve function 
in the scikit-learn package to evaluate the relationship 
between MmisP’s performance and the size of the train-
ing set. As can be seen from Additional file 8: Figure S2, 
when the training set size is small, the training set error is 

low, and the cross-validation set error is high. When the 
size of the training set increases gradually, the model can 
be generalized better, and the errors of both tend to be 
stable. MmisP does not underfit or overfit and therefore 
does not benefit from more training data. In the exter-
nal tenfold cross-validation loop, the accuracy of MmisP 
is not only high but also very stable (0.873, 0.827, 0.850, 
0.759, 0.770, 0.821, 0.829, 0.790, 0.834, 0.829, mean accu-
racy: 0.819 ± 0.033), which also shows that the model is 
universal. In addition, we tested two Logistic Regression 
models on Vari_TestUnbalance to carefully observe the 
enhancement effects of disease-specific features on the 
models.

The results demonstrated the performance of the predic-
tor, which was evaluated using the confusion matrix shown 
in Fig. 2. In clinical settings, accurately identifying all path-
ogenic variants is crucial, which leads to a high true posi-
tive (TP) rate (269 > 267). Likewise, it is important to avoid 
misclassifying true pathogenic variants as benign variants 
to minimize the false negative (FN) rate (12 < 14). To under-
stand the relative importance of features in the prediction 
model, we calculated parameter ωi in the Logistic Regres-
sion algorithm. Since each feature corresponds to a model 
parameter ωi, the absolute value of ωi indicates the degree 
to which it affects the predicted result. Notably, the impact 
of SIFT_score was the greatest, with a ωi value of 0.89, 
consistent with our expectations (as shown Fig. 3). Other 
important features included protein site conservation, 
population frequency, and tissue expression information 

Table 2 Performance of various algorithmic models

Vari_Train: 1936 benign, 1936 pathogenic

Methods Accuracy
(%)

Precision
(%)

AUC F1Score Recall
(%)

MCC

AdaBoost 80.91 78.84 0.874 0.817 85.01 0.631

Decision Tree 74.30 77.17 0.743 0.727 68.90 0.646

Random Forest 80.96 82.75 0.877 0.802 78.15 0.744

Logistic Regression 81.92 82.01 0.904 0.819 81.92 0.725

KNeighbors 71.25 71.30 0.789 0.710 71.08 0.587

SVM 79.83 81.45 0.880 0.792 77.32 0.711

Table 3 Performance of various algorithm models under feature subsets (excluding mitochondrial-specific features)

Vari_Train: 1936 benign, 1936 pathogenic

Methods Accuracy (%) Precision (%) AUC F1Score Recall (%) MCC

Sub_AdaBoost 80.37 77.87 0.871 0.813 85.53 0.654

Sub_Decision Tree 72.39 75.13 0.724 0.705 66.83 0.654

Sub_Random Forest 81.82 83.20 0.880 0.813 79.65 0.739

Sub_Logistic Regression 80.91 81.05 0.900 0.809 80.93 0.702

Sub_KNeighbors 73.71 70.50 0.802 0.756 81.87 0.601

Sub_SVM 79.21 80.47 0.880 0.787 77.32 0.703
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of proteins. In addition, the network-centric measures of 
Closeness_centrality and Eigenvector_centrality ranked 
second (ωi = 0.63) and twelfth (ωi = 0.21), respectively, 
highlighting the potential benefit of considering all mito-
chondrial proteins as an interacting network. Moreover, 
the peak logarithm of tissue expression (MitoCarta 3.0) 
ranked fourteenth (ωi = 0.20), indicating the potential of 
genotype-tissue expression data in improving variant clas-
sification accuracy.

MmisP outperforms genome-wide pathogenicity 
predictors based on overall classification performance 
measures
To evaluate the performance of MmisP on Variants of 
Undetermined Significance (VUS), we compared it to 
several other genome-wide variant pathogenicity predic-
tors, including M-CAP, REVEL, CADD [35], Eigen [36], 
and PrimateAI [37], which are renowned for their per-
formance in predicting the pathogenicity of missense 

Fig. 2 Confusion matrix of Logistic Regression model in two feature backgrounds. A A confusion matrix containing 115 complete features. true 
positive:269, true negative:488, false positive:189, false negative:12. B A confusion matrix that does not contain mitochondria-specific features. true 
positive:267, true negative:498, false positive:179, false negative:14

Fig. 3 Importance of each feature in the Logistic Regression model. Blue is the common feature and green is the mitochondria-specific feature
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variants. We evaluated them using the Vari_TestUnbal-
ance dataset, which emphasizes how the loss of predic-
tion scores limits the utility coverage of pathogenicity 
predictor. While MmisP and DANN [38] scored all test 
variants, M-CAP lost nearly 40% missing scores, and 
the prediction scores of MutationAssessor (8.35%) [39], 
Polyphen2-HDIV (4.07%) [15], Polyphen2-HVAR (4.07%) 
[15], Eigen (4.27%) and PrimateAI (4.27%) were also lost. 
By comprehensively evaluating the performance of all 
predictors, we found that their Precision (PPV) ranged 
from 29.47% to 81.74%, and only PrimateAI had a preci-
sion exceeding 80% (Table 4). On the other hand, the neg-
ative predictive value (NPV) ranges from 78.18 to 100%, 
with NPVs of more than 90% for all predictors except 
M-CAP and PrimateAI. The specificity values ranged 
from 1.03% to 96.76%, and the recall values ranged from 
34.94% to 100%.

Compared to recall, the lower specificity of some 
pathogenicity predictors suggests that some benign vari-
ants may be incorrectly classified as disease-causing. 
Therefore, it is necessary to establish a more stringent 
threshold for all pathogenicity predictors. Since the Vari_
TestUnbalance dataset is imbalanced, with the number of 
benign variants exceeding that of disease-causing vari-
ants, the Precision-Recall Curve (PRC) is a better indi-
cator of predictor performance (Fig.  4A). Since PRC is 
sensitive to sample size, we can observe the effect of sam-
ple size changes on predictor performance. Among the 
evaluated predictors, DANN, MutationTaster [40] and 
fathmm-MKL [41] had average precision of less than 0.7, 
whereas MmisP among the top with a score of 0.87. The 
feasibility of MmisP in practical applications has been 
demonstrated by the unbalanced data of nuclear gene 
variants associated with mitochondrial diseases. In con-
trast, the ROC Curve remained unchanged in the case 

of sample imbalance, so we plotted the ROC Curve and 
calculated Area Under Curve (AUC). We found that the 
AUC values of MetaLR (0.901) [42], MetaSVM (0.904) 
[42] and MmisP (0.938) were greater than 0.9, indicat-
ing their advantages r over other predictors (Fig. 4B). For 
Vari_TestUnbalance, the best classification threshold cal-
culated was 0.624, indicating that MmisP performed bet-
ter at this threshold. As Vari_TestBalance has a good data 
balance, the area under the PRC curve for each predic-
tor increased (Fig.  4C), and MmisP still had the largest 
area. The overall ROC curve did not significantly change 
(Fig.  4D), with the best classification threshold being 
0.523. In summary, MmisP is suitable for application in 
different variance backgrounds.

The distribution of disease-causing and benign variants 
prediction scores
To gain deeper insights into the classification process of 
MmisP and other predictors, we calculated the predic-
tion score for each variant in the Vari_TestBalance data-
set and classified them based on a set threshold (0.5 for 
MmisP). We visualized the distribution of "score" for 
pathogenic and benign variants using violin plots (Fig. 5). 
Notably, MutationTaster had the poorest performance 
with almost all variants receiving prediction scores above 
the threshold. Eigen, DANN, and fathmm-MKL also 
performed poorly in classifying benign variants, with 
around half being falsely classified as disease-causing 
(Eigen 40.2%, DANN 40.2%, and fathmm-MKL 69.1%). 
Although M-CAP with high threshold had high sensitiv-
ity (the ability to correctly classify variants), it sacrificed 
specificity, resulting in approximately 57.4% of benign 
variants being classified as disease-causing. This indicates 
that an excessive pursuit of high sensitivity may reduce 
the resolution of exome variant analysis, increase the 

Table 4 Performance of MmisP and other genome-wide tools

Vari_TestUnbalance: 677 benign, 281 pathogenic

Methods Missing Precision (%) NPV (%) Specificity (%) FPR (%) Recall (%) FNR (%) Accuracy (%) MCC AUC F1Score

MmisP 0 58.73 97.60 72.08 27.92 95.73 4.27 79.02 0.618 0.938 0.728

MutationAssessor 80 51.20 93.32 63.58 36.42 89.35 10.65 71.30 0.485 0.864 0.651

MutationTaster 1 29.47 100.00 1.03 98.97 100.0 0.00 29.99 0.055 0.760 0.455

PolyPhen2-HDIV 39 48.61 93.29 60.12 39.88 89.71 10.29 68.88 0.457 0.863 0.630

PolyPhen2-HVAR 39 57.00 91.52 73.42 26.58 83.82 16.18 76.50 0.527 0.877 0.679

DANN 0 48.27 93.15 60.27 39.73 89.32 10.68 68.79 0.453 0.815 0.627

Eigen 41 50.71 96.71 63.00 37.00 94.68 5.32 72.08 0.523 0.892 0.660

FATHMM-MKL 0 37.57 95.04 33.97 66.03 95.73 4.27 52.09 0.311 0.793 0.540

M-CAP 383 60.64 89.13 41.69 58.31 94.64 5.36 67.48 0.425 0.854 0.739

MetaLR 10 68.35 90.19 85.07 14.93 77.70 22.30 82.91 0.606 0.901 0.727

MetaSVM 10 69.52 90.68 85.67 14.33 78.78 21.22 83.65 0.623 0.904 0.739

PrimateAI 41 81.74 78.18 96.76 3.24 34.94 65.06 78.63 0.436 0.845 0.490
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number of suspicious disease variants, and make it dif-
ficult for predictors to identify one or two ‘causative’ vari-
ants, hindering the diagnosis of genetic diseases. On the 
other hand, MmisP, as a proprietary tool, only misclassi-
fied 18.7% of benign variants and 9.6% of disease-causing 
variants. Polyphen2-HVAR also performed well with a 
misclassification rate of only 26.2% for benign variants 
and 15.9% for disease-causing variants.

Performance of MmisP under the ACMG/AMP variant 
interpretation guidelines
MmisP performed remarkably well in Vari_Test4Gene 
with a limited range of gene. MmisP’s accuracy, F1score, 
recall and MCC were all higher than the other three 
tools. PrimateAI’s accuracy (100.00%) is perfect, but its 
recall (45.45%) is the lowest. MmisP’s (0.936) AUC value 
is second only to REVEL’s (0.961), which also illustrates 
its usefulness as a disease-specific pathogenicity predic-
tor  (Table  5). We assessed the performance of MmisP 
using defined thresholds (Probability: Pr > 0.75; Benign 
variant: Pr < 0.15; Variants of Unknown Significance 
(VUS): 0.15 ≤ Pr ≤ 0.75) [43], and the PP3/BP4 evidence 
unique to the Mitochondrial Disease Variants Interpre-
tation Guidelines. We tested MmisP against the guide-
line-recommended tools REVEL and M-CAP at low 
classification thresholds using Vari_TestThreshold data-
set (Table 6). MmisP had a recall rate of 97.81%, second 

only to REVEL (98.39%), but significantly better than 
M-CAP (41.67%, p < 0.001). Overall, MmisP correctly 
classified 56.74% of missense variants, with a slightly 
higher accuracy than REVEL (52.54%) and M-CAP 
(52.19%). Additionally, MmisP minimized the num-
ber of variants with VUS, with only 38.88% of predicted 
scores falling into that range, lower than REVEL (45%). 
M-CAP (34.5%), at the cost of low specificity, only classi-
fied a small number of variants as being disease-causing. 
In conclusion, at the extreme threshold, MmisP can clas-
sify 61.12% missense variants as being disease-causing or 
benign, with 92.84% of them being correctly classified.

Performance on simulated disease exomes
In the analysis of Mendelian disease exomes, the major 
challenge is to identify one or two "causative" disease-
causing variants among of hundreds of predicted dis-
ease-causing variants, even after applying a standard 
allele frequency filter to remove common benign vari-
ants (MAF > 1%). However, due to the large number of 
predicted disease-causing variants, it could be difficult 
to pinpoint the few variants that are truly responsible 
for the disease, especially with limited resources such as 
time and cost that make it infeasible to experimentally 
validate various candidate variants. To address this issue, 
we randomly selected background exons from 170 and 29 
healthy individuals from the 1000 Genomes Project into 

Fig. 4 P-R curve and ROC curve of MmisP and other genome-wide pathogenicity predictors under two testing sets. A P-R curve under Vari_
TestUnbalance. B ROC curve under Vari_TestUnbalance. Black dots represent the optimal threshold of MmisP under current circumstances is 0.523. 
C P-R curve under Vari_TestBalance. D ROC curve under Vari_TestBalance. Black dots represent the optimal threshold of MmisP under current 
circumstances is 0.624
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Fig. 5 Distribution of prediction scores from MmisP and other genome-wide pathogenicity predictors (Based on the Vari_TestBalance: 256 benign, 
239 pathogenic). The red line is the threshold for each tool
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two groups and introduced a ‘causative’ disease-caus-
ing variant into the background exomes to simulate the 
exomes of Mendelian disorders, which were named Sim-
ulated_Exome170 and Simulated_Exome29, respectively 
(as described in Supplementary Methods).

This study aimed to evaluate the performance of dif-
ferent pathogenicity predictors in identifying disease-
causing variants in simulated exomes. To compare the 
length of the list of disease-causing variants identified 
by different predictors, we firstly calculated the percent-
age of disease-causing variants predicted by each predic-
tor using the threshold values recommended. MetaLR 
generated the smallest candidate variant list, predicting 
only 0.475 ± 0.377% of Simulated_Exome29 variants as 
disease-causing, while MmisP predicted 38.419 ± 1.244% 
(Fig.  6A and Additional file  5: Table  S2). Simulated_
Exome170 showed a similar trend, with MetaLR predict-
ing 0.644 ± 0.351% of variants as disease-causing, while 
MmisP remained the worst performer at 38.567 ± 1.366% 
(Fig. 6B and Additional file 6: Table S3). Additionally, we 
found all tools had a similar trend in the percentage of 
disease-causing variants predicted in both simulated dis-
ease exomes. Next, we evaluated the ability of the patho-
genicity predictors to rank the ‘causative’ disease-causing 
variants among the top-scoring ones. After sorting the 
scores for each predictor, we calculated the average rank 
of disease-causing variants introduced in the exome 
simulations (Fig.  6C and Additional file  6: Table  S3). In 

Simulated_Exome29, MmisP performed well with an 
average rank of 39.655 ± 55.478 (median rank: 18), which 
was only slightly worse than the best-performing tool, 
MetaLR, with an average rank of 15.414 ± 8.604 (median 
rank: 12), but the difference was not significant (Mann–
Whitney p = 0.703). In Simulated_Exome170, MmisP and 
MetaLR both showed excellent performance (Mann–
Whitney p = 0.027), with average ranks of 12.429 ± 21.382 
and 12.162 ± 5.880(median rank: 3.5 and 10), respectively 
(Fig.  6D and Additional file  6: Table  S3). Overall, there 
were significant differences in the average rank of the 
‘causative’ disease-causing variants between the two sim-
ulated exomes (Additional file 6: Table S3).

Discussion
The development of high-throughput sequencing tech-
nologies has made it possible to study the exomes of 
rare Mendelian disorders. However, variant annotation 
has resulted in many suspect variants, making it difficult 
for us to determine ‘causative’ disease-causing variants 
through manually screening or experimentally analy-
sis. In clinical settings, the phenotype of disease is often 
assessed in advance through other medical tests. How-
ever, annotating all input variants using existing tools 
are time consuming and computationally expensive. 
Although several whole genome pathogenicity predic-
tors have been developed to identify disease-causing and 
benign variants, their performance varies due to different 

Table 5 Comparison of MmisP and other predictors in four widely studied genes (POLG, SLC19A3, PDHA1, ETHE1)

Vari_Test4Gene: 21 benign, 23 pathogenic

Methods Accuracy
(%)

Precision
(%)

AUC F1 Score Recall
(%)

MCC

MmisP 88.63 84.61 0.936 0.897 95.65 0.788

REVEL 79.06 72.41 0.961 0.823 95.45 0.611

PrimateAI 72.09 100.00 0.902 0.625 45.45 0.537

DANN 75.00 82.01 0.900 0.784 86.95 0.507

Table 6 Performance of MmisP and other tools under recommended thresholds

Vari_TestThreshold: 294 benign, 277 pathogenic

*p < 0.001

Methods MmisP M-CAP REVEL

Overall accuracy (%) 56.74 52.19 52.54

The proportion of variants classified with recommended (%) 61.12 65.5 55.0

Accuracy of recommended classifications (%) 92.84 79.68 94.54

The proportion of variants with indeterminate classification (%) 38.88 34.5 45.0

Recall (%) 97.81* 41.67 98.39

Precision (%) 89.5 89.28 94.35

Specificity (%) 87.35 97.64 91.34

NPV (%) 97.32 77.99 97.48
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construction strategies. To address this issue, our study 
proposes a new strategy, defining a list of nuclear genes 
and transcripts for primary mitochondrial disease. This 
improves speed of annotation and eliminates irrelevant 
candidate genes. Furthermore, we demonstrate that 
MmisP, a pathogenicity predictor specifically designed 
for primary mitochondrial disease, uses a specific frame-
work to train high-quality variants and unique features, 
which significantly improves the prediction accuracy for 
nuclear gene variants compared to other genome-wide 
pathogenicity predictors.

The success of MmisP can be attributed to several fac-
tors. Firstly, we applied various mainstream machine 
learning algorithms separately to achieve the best model. 
Secondly, all variants used for training were screened 
with disease-specific labels, greatly reducing the wrong 
prediction of benign variants as causative factors (i.e., 
whether a variant has caused any disease) in the context 
of a specific disease. The dataset obtained by the above 
steps also avoids type I circular error. Thirdly, because 
genome-wide tools are trained on the entire genome, 
some genes have different functions in all related molec-
ular mechanisms. We only consider genes whose protein 
expression is located in mitochondria, thereby eliminat-
ing the influence of other unrelated genes. Fourthly, our 
model includes disease-specific features that accurately 
describe the importance of genes in mitochondrial func-
tion and may lead to a more accurate interpretations 

of variants in critical genes. In addition, some features 
included in other tools may be redundant and do not 
make substantial contributions to model improvement. 
Therefore, manually filtering the feature list is an effective 
solution. Additionally, the K-nearest neighbor algorithm 
is utilized to solve the problem of missing values caused 
by some features not covering all genes or variants.

It is worth noting that although MmisP has been care-
fully developed, there are still some limitations to be 
addressed. Firstly, primary mitochondrial disease is just 
one type of Mendelian disease, so the number of avail-
able variants is much less than that of the genome-wide 
variants, which poses a challenge for model training. 
Although efforts have been made to reduce the nonlin-
ear model into a linear model and add constraint terms, 
such as L1/L2 regularization, to minimize the hypoth-
esis space, the model may still exhibit poor generaliza-
tion ability. Moreover, since the training sets of Eigen, 
M-CAP, and REVEL is not easily to obtain, we cannot 
exclude overlapping variants in the testing set. In some 
cases, this may lead to an overestimation of the perfor-
mance of these tools. For example, the sensitivity value 
of MutationTaster on the Vari_TestUnbalance set is 0.99 
and may not accurately predict pathogenicity. Further-
more, our study found that MmisP performs poorly in 
the simulated exomes sets, predicting most benign vari-
ants as disease-causing. This is because we restricted 
the gene range trained by the model to those associated 

Fig. 6 Evaluation of the different pathogenicity predictors using two simulated exomes. A Distribution of the percentage of predicted 
disease-causing variants in the Simulated_Exome29. B Ranking of the “causative” disease-causing variants introduced in Simulated_Exome29. C 
Distribution of the percentage of predicted disease-causing variants in the Simulated_Exome170. D Ranking of the “causative” disease-causing 
variants introduced in Simulated_Exome170
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with mitochondria, resulting in fewer benign variants 
for training compared to genome-wide tools. How-
ever, the positive result obtained by the model was that 
the ’causative’ disease-causing variants ranked higher in 
the list, making screening work less laborious. Finally, 
MmisP only predicts the pathogenicity prediction for 
missense variants, which make it challenging to con-
sider other types of variants simultaneously. Due to the 
small number of other variant types, it is difficult to form 
a high-quality training set. In addition, the limited avail-
able features, such as population allele frequency data 
and segregation data, only contains values for missense 
variants.

In this study, we introduce a new tool for disease-
specific annotation and variant pathogenicity predic-
tion called MmisAT. This tool is specifically designed 
for primary mitochondrial diseases and can be easily 
downloaded with required files. Our study reveals the 
limitations of genome-wide pathogenicity predictors and 
emphasizes the importance and benefits of developing 
customized pathogenicity predictors for accurately inter-
preting disease-specific pathogenic variants. 

It should be noted that MmisP provides numerical evi-
dence for the PP3/BP4 rule as a guide to interpreting spe-
cific variants in mitochondrial disease, making it more 
reliable than existing genome-wide pathogenicity predic-
tion tools. However, it cannot serve as an independent 
clinical decision-making tool, nor can it replace the inter-
pretation of variants in existing ACMG/AMP guidelines. 
Our approach introduces specific features to enhance the 
generality of the model and provides a new perspective 
for the development of the field.

By using this strategy, researchers can focus on devel-
oping new Artificial Intelligence (AI) algorithms and 
improving the accuracy of training data. With the con-
tinuous accumulation of available training data, it will 
become feasible to develop tools for predicting the inci-
dence of genetic diseases specific to phenotypes or even 
specific genes in the future. In addition, we provide 
precomputed pathogenicity scores (all_scores.MmisP) 
for all rare missense variants that may be associated with 
primary mitochondrial disease to accurately character-
ize mitochondrial dysfunction. This framework can be 
used to develop accurate disease-specific pathogenicity 
predictors and improve variant interpretation of various 
Mendelian diseases.
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