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Abstract 

Background Genetic variants in the coding region could directly affect the structure and expression levels of genes 
and proteins. However, the importance of variants in the non-coding region, such as microRNAs (miRNAs), remain 
to be elucidated. Genetic variants in miRNA-related sequences could affect their biogenesis or functionality and ulti-
mately affect disease risk. Yet, their implications and pleiotropic effects on many clinical conditions remain unknown.

Methods Here, we utilised genotyping and hospital records data in the UK Biobank (N = 423,419) to investigate 
associations between 346 genetic variants in miRNA-related sequences and a wide range of clinical diagnoses 
through phenome-wide association studies. Further, we tested whether changes in blood miRNA expression levels 
could affect disease risk through colocalisation and Mendelian randomisation analysis.

Results We identified 122 associations for six variants in the seed region of miRNAs, nine variants in the mature 
region of miRNAs, and 27 variants in the precursor miRNAs. These included associations with hypertension, dyslipi-
daemia, immune-related disorders, and others. Nineteen miRNAs were associated with multiple diagnoses, with six 
of them associated with multiple disease categories. The strongest association was reported between rs4285314 
in the precursor of miR-3135b and celiac disease risk (odds ratio (OR) per effect allele increase = 0.37, P = 1.8 ×  10–162). 
Colocalisation and Mendelian randomisation analysis highlighted potential causal role of miR-6891-3p 
in dyslipidaemia.

Conclusions Our study demonstrates the pleiotropic effect of miRNAs and offers insights to their possible clinical 
importance.
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Background
MicroRNAs (miRNAs) are small non-coding ribonucleic 
acids (RNA) of approximately 22 nucleotides that regu-
late gene expression and play critical roles in determining 
whether genes are active and how much protein is pro-
duced [1]. Mature miRNAs can perform their functions 
either in the cytoplasm or be released from the cell to 
the circulation and body fluids [2] to serve as chemical 
messengers and facilitate cell-to-cell communications [3]. 
These miRNAs can bind to target mRNAs to suppress 
translation [1] through inhibiting translation or affect 
degradation of mRNAs [4, 5]. A single miRNA can bind 
to multiple target genes, leading to a complex regulatory 
mechanism. Conversely, each gene could be targeted by 
multiple miRNAs [6].

Previous studies have explored the role of miRNAs in 
complex disorders through various approaches, includ-
ing observational and experimental studies. Experimen-
tal studies typically assess molecular changes following 
administration miRNA mimics or antagonists and an 
assessment of the expression of potential target genes 
[7–10]. Candidate-based studies still dominate the stud-
ies of miRNAs in complex disorders, although unbiased 
high-throughput approaches are increasingly reported 
[11, 12]. With over 2000 miRNAs currently identified in 
humans [13], there is an opportunity for a comprehensive 
investigation to identify novel candidate miRNAs in com-
plex diseases. Among observational studies, relatively 
few have leveraged genetic association data for circula-
tory miRNAs. The use of genetic data to study miRNAs 
could minimise the effect of confounders and avoid 
reverse causation since the genetic variants are fixed dur-
ing conception.

Similar to other genes, the non-coding sequences of 
miRNAs are also subject to genetic variation, which could 
exist in the seed, mature, or precursor sequences of miR-
NAs [14], albeit the density is lower than the other parts 
of human genome [15–17], indicating that these regions 
are evolutionary conserved. The genetic variants in the 
seed region could interfere with the interaction between 
miRNA and target mRNA and, thus, are expected to be 
more functional [15, 18]. Meanwhile, those residing out-
side the seed region can affect binding beyond the seed 
region and the strength of inhibition of miRNA target 
[19], influence the biogenesis of mature miRNAs [20], 
or the processing of primary miRNA to precursor miR-
NAs [21]. Since a single miRNA could have multiple 
target genes [22], genetic variants residing in the miRNA-
related sequence could affect the expression of target 
genes and downstream biological processes.

Extensive research has investigated the associations 
between genetic variants in miRNA-related sequences, 
i.e., seed, mature, or precursor regions with specific type 

of disorders including cancers [23, 24] and cardiometa-
bolic traits [24, 25]. We previously showed that pleiot-
ropy is common for miRNAs [26], which highlights the 
value of investigating many phenotypes rather than a 
single trait or disease for each miRNA. However, no sys-
tematic investigation of genetic variants in miRNAs on a 
wide range of traits has been published thus far.

In this study, genetic variants residing in different 
regions of miRNAs were used to proxy miRNA expres-
sion levels and link them with an extensive range of clini-
cal conditions in the UK Biobank through phenome-wide 
association studies (PheWAS). We further tested for the 
presence of an effect of miRNAs on clinical conditions 
through colocalisation and Mendelian randomisation 
analysis. This approach offered the first large-scale sys-
tematic analysis to investigate the effects of variants in 
miRNA sequences on human diseases in a hypothesis-
free manner and discover novel associations with possi-
ble clinical importance.

Methods
Study population
This study used individual-level data from the UK 
Biobank, a large prospective cohort of ~ 500,000 partici-
pants in the UK [27]. The UK Biobank recruited individu-
als aged 40–69 years old living in the UK between 2006 
and 2010. This cohort collects extensive phenotype and 
genotype data, including longitudinal follow-up provided 
in the hospital episode statistics (HES) data.

Participants were asked to give blood samples at 
enrolment from which the DNA was extracted. Geno-
typing was conducted at Affymetrix Research Services 
Laboratory. Quality  control of the data was carried 
out at the Wellcome Trust Centre for Human Genet-
ics [28]. Genome-wide genotyping was performed on 
all UK Biobank participants, covering ~ 805,000 mark-
ers. Marker-based quality control was conducted using 
463,844 participants of European ancestries, where they 
were tested for batch effects, plate effects, Hardy–Wein-
berg Equilibrium (HWE), sex effects, array effects, and 
discordance across replicates. Any marker that failed in 
at least one of those tests was set to have a missing geno-
type call.

Imputation in the UK Biobank was conducted using 
UK10K and 1000 Genomes Phase 3 reference panels, 
consisting of 87,696,888 bi-allelic markers in 12,570 hap-
lotypes for interim data release (~ 150,000 samples). Fur-
ther, the HRC reference panel consisting of 39,235,157 
markers in 64,976 haplotypes was incorporated in the 
remaining samples’ imputation. The major histocompat-
ibility complex (MHC) region in chromosome six was 
imputed separately using a specific algorithm [29]. The 
UCSC genome annotation database for the Genome 
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Reference Consortium Human Build 37 (GRCh37) 
assembly of the human genome was used to assign the 
dbSNP Reference SNP (rs) IDs.

In our study, one of each pair or relatives was excluded 
based on a kinship coefficient of > 0.088, the proposed 
lower-limit kinship-coefficient threshold for second-
degree relatives [30]. Analysis was restricted to partici-
pants who identified as “White”. Additionally, individuals 
who asked to withdraw from the cohort until the time of 
analysis were excluded (Additional file 1: Fig. S1).

Selection of candidate variants
An overview of our study is presented in Fig. 1. We used 
a database from the most recent version of miRNASNP-
v3 (http:// bioin fo. life. hust. edu. cn/ miRNA SNP/# !/) [31] 
to obtain the list of candidate variants residing in miRNA 
genes. The dataset was available from containing 46,826 
unique variants residing in 1897 precursor miRNAs and 
corresponding to 2625 mature miRNAs. 

Our analysis focused on well-imputed common vari-
ants. From the list of variants, 370 of them were avail-
able in the imputed genetic data in the UK Biobank. 
There were 350 variants remained after filtering for info 
score > 0.7 and minor allele frequency > 0.01. Multi-allelic 
variants were further excluded, resulting in 346 variants 
included in our analysis (Additional file  1: Table  S1). In 
total, we tested for 43 variants in the seed region of 44 
miRNAs, 45 variants in the mature region of 66 miRNAs, 
and 238 variants in 208 precursor miRNAs (Fig. 1).

Phenome‑wide association studies (PheWAS)
PheWAS was conducted separately for each candidate 
variant using the PheWAS package in R [32]. We used the 
hospital episode statistics data in the UK Biobank includ-
ing a total of 8,404,826 episodes. There were 372,256 
participants with at least one episode of diagnosis in all 
hospital inpatient records. ICD (ninth and tenth editions) 
codes from hospital episode statistics data were aligned 
into phecodes to identify clinically related phenotypes 
and assign a case–control status for each participant [33]. 
The analysis was conducted for phecodes with at least 
200 cases [34]. Logistic regression was performed for 
each genetic variant with adjustment for age, sex, geno-
typing array, and the first five genetic principal compo-
nents to account for population stratification. In this 
study, we accounted for multiple testing by controlling 
for false discovery rate (FDR), which estimates the pro-
portion of falsely rejected hypothesis among all tests [35]. 
This method was chosen because hospital diagnoses are 
not entirely independent of each other.

Target gene and enrichment analysis
For findings in the seed region of miRNAs, putative tar-
get genes for miRNAs that might be involved in the dis-
ease process were identified by leveraging the GWAS 
summary statistics for the traits of interest and target 
genes from TargetScan v7.2 [36] and miRTarBase [37]. 
Enrichment analysis for target genes were conducted for 
miRNAs and their counterparts following the method 
applied in our previous work [26].

Fig. 1 Study overview. We conducted PheWAS on variants in miRNAs using the UK Biobank data (N = 423,419). Putative target genes for miRNAs 
with FDR-significant findings in their seed regions were identified by leveraging databases for target genes of miRNAs and the genome-wide 
association studies (GWAS) hits for relevant traits. Further, we tested whether changes in miRNA expression could affect disease risk 
through colocalisation and Mendelian randomisation

http://bioinfo.life.hust.edu.cn/miRNASNP/#!/
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Colocalisation and Mendelian randomisation (MR)
Previous expression quantitative trait loci (eQTL) analy-
sis on blood or plasma levels of miRNAs were used to 
check whether the genetic variants affect the level of 
corresponding miRNAs or acting as miRNA expression 
quantitative trait loci (miR-eQTLs) [38, 39]. For associa-
tions with evidence of miR-eQTLs, we performed colo-
calisation using summary statistics of miR-eQTLs in the 
Rotterdam Study [38] and summary statistics from large 
GWAS of the trait of interest. For each miRNA-disease 
pair, we used genomic region extending 200 kb on either 
side of mature miRNA position according to miRBase 
[13]. We implemented a Bayesian framework to test for 
the presence of shared causal variant and calculated pos-
terior probability to declare as evidence of colocalisation 
implemented in coloc package in R [40].

Colocalisation method estimates the posterior prob-
abilities (PP) of four scenarios/hypotheses: H0: neither 
trait has a genetic association in the region, H1: only 
trait 1 (miRNA) has a genetic association in the region, 
H2: only trait 2 (disease) has a genetic association in the 
region, H3: both traits are associated with different causal 
variants, H4: both traits are associated and share a single 
causal variant. Default priors were used in all analyses. 
Results with PP H4 > 0.5 were reported and those with PP 
H4 > 0.7 were considered significant. We also extracted 
SNP with the highest SNP PP H4 (posterior probability 
that the SNP being causal conditional on H4 being true) 
as the likely shared causal variant between miRNAs and 
the clinical conditions.

For findings with evidence of colocalisation, we further 
conducted MR analysis using the same genetic variants 
used for PheWAS and estimating the MR effect size using 
the Wald ratio method. The genetic association estimates 
between the instruments and miRNAs were taken from 
the Rotterdam Study [38], whereas between the instru-
ments and clinical outcomes were taken from the UK 
Biobank.

Results
Study participants
This analysis used individual-level data from the UK 
Biobank, a large prospective cohort of ~ 500,000 partici-
pants in the UK [27]. After excluding related participants, 
those who self-identified as non-White, and withdrawn 
participants, 423,419 participants were included (Addi-
tional file  1: Fig. S1). Of those, 54% were female. The 
mean (SD) of age of participants was 56.8 (7.9) years 
(Table  1). The hospital-based diagnoses coded in both 
ICD9/10 were mapped into 1805 phecodes to enable con-
ducting PheWAS, of which 905 phecodes had at least 200 
cases across 16 disease groups (Table 2).

Phenome‑wide association studies
We included 346 common genetic variants in our anal-
ysis, corresponding to 43 variants in the seed region of 
44 miRNAs, 45 variants in the mature region of 66 miR-
NAs, and 238 variants in 208 precursor miRNAs (Addi-
tional file  1: Table  S1). The minor allele frequencies of 
tested variants ranged from 0.03 to 0.33 (in seed region), 
0.01–0.42 (in mature region), 0.01–0.46 (in precursor 
miRNAs). PheWAS was conducted for each of those 346 
variants by testing against 905 phecodes with at least 
200 cases. At FDR < 0.05 (P < 2.15 ×  10–5), there were 122 
significant associations for 35 miRNAs, consisting of six 
variants in the seed region, nine variants in the mature 
region, and 27 variants in the precursor sequences (Fig. 2, 
Additional file 1: Table S2). Of 35 miRNAs with signifi-
cant findings, nineteen were associated with multiple 
diagnoses, with six of them associated with multiple dis-
ease categories. The strongest associations were reported 
between rs4285314 in the precursor gene of miR-3135b 
and celiac disease risk (odds ratio (OR) per effect allele 

Table 1 Descriptive characteristics of the UK Biobank 
participants in PheWAS (N = 423,419)

SD standard deviation, N number of participants, BMI body mass index, SBP 
systolic blood pressure, DBP diastolic blood pressure, LDL-C low-density 
lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol

Characteristics Mean/N (SD/%)

Age, years (SD) 56.8 (7.9)

Sex, female (%) 228,441 (53.5)

BMI (SD) 27.4 (4.8)

SBP, mmHg (SD) 139.9 (19.7)

DBP, mmHg (SD) 82.2 (10.7)

History of type 2 diabetes 22,054 (5.2)

History of coronary heart disease 22,314 (5.3)

Smoking status

 Current smoker 44,061 (10.4)

 Previous smoker 150,323 (35.5)

 Never smoker 227,534 (53.7)

Alcohol drinking status

 Current 394,792 (93.2)

 Previous 14,766 (3.5)

 Never 13,477 (3.4)

Lipid

 Total cholesterol, mmol/L (SD) 5.7 (1.14)

 LDL-C, mmol/L (SD) 3.6 (0.87)

 HDL-C, mmol/L (SD) 1.5 (0.38)

 Triglycerides, mmol/L (SD) 1.8 (1.02)

Employment status

 Employed (including self-employed) 241,669 (57.1)

 Retired 144,895 (34.2)

 Student (full or part-time) 874 (0.21)

 Unemployed 6,061 (1.43)
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increase = 0.37, P = 1.8 ×  10–162). The strong association 
found in current study highlighted the value of genetic 
studies using large population-based cohort.

Fifty-seven associations (46.7%) identified in our anal-
ysis were for seven variants in the major histocompat-
ibility complex (MHC) region (Fig.  2, Additional file  1: 
Table  S2). Each variant in this region was associated 
with multiple diagnoses in at least two disease groups 
(Additional file  1: Fig. S2), the majority were immune-
related disorders (Fig.  3, Additional file  1: Table  S2). 
Examples are between rs2276448 and celiac disease 
(OR 0.49, P = 1.7 ×  10–32), ankylosing spondylitis (OR 
0.57, P = 1.2 ×  10–6), and allergy to antibiotics (OR 1.08, 
P = 1.2 ×  10–7).

Outside the MHC region, 12 associations were with 
variants in seed, 15 in mature, and 38 in the precur-
sor regions of miRNAs (Fig.  4). Several variants in the 
seed region were associated with hypertension, namely 
rs2168518 in miR-4513 (OR 0.96, P = 8.5 ×  10–10), 
rs2070960 in miR-3620-5p (OR 0.95, P = 3.7 ×  10–7), 
rs2925980 in miR-7854-3p (OR 0.97, P = 7.0 ×  10–6), and 
rs11382316 in miR-316 (OR 1.03, P = 1.7 ×  10–6). The 
rs2168518 polymorphism in miR-4513 was addition-
ally associated with musculoskeletal disorders, includ-
ing osteoarthritis (OR 1.04, P = 1.1 ×  10–5). To note, the 
associations between rs2168518 and hypertension were 
significant after more stringent corrections for multiple 
testing using Bonferroni method (P < 0.05/(346 × 905) 
(Fig. 4a, Additional file 1: Table S2).

In the mature region, two variants in miR-3939 were 
associated with hypothyroidism, namely rs368791729 
(OR 1.08, P = 8.1 ×  10–11) and rs370955537 (OR 1.08, 
P = 8.1 ×  10–11). Multiple variants were associated with 
hypertension, namely rs3817551 in miR-7107-3p (OR 
0.97, P = 1.1 ×  10–6) and rs4687672 in miR-8064 (OR 
1.03, P = 2.9 ×  10–6). Additionally, rs4687672 was also 
associated with type 2 diabetes (OR 1.05, P = 4.8 ×  10–6). 
Rs11614913 in the mature region of miR-196a was pre-
viously associated with survival in non-small cell lung 
cancers [41], decreased risk of breast cancer [42], and 
type 2 diabetes [43]. Here, we additionally showed 
rs11614913 being associated with reflux esophagitis (OR 
1.06, P = 3.3 ×  10–6) (Fig. 4b, Additional file 1: Table S2). 
Of the 38 associations for 22 variants in precursor genes 
of 22 miRNAs, the strongest association was between 
rs547611708 in the precursor of miR-1225 and atrial 
fibrillation and flutter (OR 1.32, P = 3.6 ×  10–9) (Fig.  4c, 
Additional file 1: Table S2).

Target gene and enrichment analysis
As genetic variants in the seed region of miRNAs are 
likely to affect the miRNA-target mRNA binding, puta-
tive target genes for miRNAs with findings in their seed 
region were investigated by leveraging the genome-wide 
association studies (GWAS) hits for relevant traits. To 
this end, we used the genetic variants located in the tar-
get genes of miRNAs and tested their association with 
corresponding traits.

Table 2 Disease groups and number of cases for diagnoses with at least 200 cases in UK Biobank

Disease groups Number of diagnoses Number of cases

Minimum Median Mean Maximum

Infectious diseases 27 223 1368 2001 9811

Neoplasms 83 206 899 2469 25,561

Endocrine/metabolic 69 203 827 4489 42,979

Hematopoietic 30 213 716 2089 14,597

Mental disorders 36 212 873 3064 15,848

Neurological 45 203 554 1402 13,336

Sense organs 76 203 736 1668 24,862

Circulatory system 110 215 1512 5280 91,878

Respiratory 55 217 2012 2870 12,908

Digestive 118 224 1945 5295 41,580

Genitourinary 51 235 1519 3091 16,317

Dermatologic 49 235 964 1895 8940

Musculoskeletal 72 215 1031 3874 51,437

Congenital anomalies 26 201 472 692 1960

Symptoms 16 210 2242 4863 19,563

Injuries and poisonings 42 219 933 2810 20,790
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Among associations in the seed region of six miRNAs 
(miR-3161, miR-3620-5p, miR-4467, miR-4513, miR-
6891-3p, miR-7854-3p) (Additional file  1: Table  S2), 
genome-wide significant hits from previous GWAS 
with publicly available summary statistics on blood 
pressure [44], cholesterol levels [45], and osteoarthri-
tis [46] were used in combination with predicted and 
validated target genes from TargetScan v7.2 [36] and 
miRTarBase [37]. Target genes that might mediate the 
association between miR-3620-5p, miR-3161, and miR-
4513 with hypertension and between miR-6891-3p and 
cholesterol levels were identified (Additional file  1: 
Table S3). We also found the proportion of target genes 
associated with blood pressure is higher than expected 
for miR-3620-3p (P = 0.01).

miRNA expression quantitative trait loci look‑up
We used summary statistics of miRNA expression 
quantitative trait loci (miR-eQTLs) [38, 39] to check 
whether the studied variants are associated with the 
blood or plasma levels of their corresponding miRNAs. 
The genetic variants in the precursor region of miRNAs 
were mapped into both -3p and -5p forms of mature 
miRNAs. Out of 346 variants tested in current analy-
sis, 33 variants were nominally significant of which 13 
variants were found to be miR-eQTLs of correspond-
ing miRNAs after Bonferroni correction (P < 0.05/346) 
(Additional file 1: Table S4).

Fig. 2 Circular plot shows the links between genetic variants in miRNAs (coloured outer circle in bottom half ) and clinical diagnoses (grey outer 
circle in upper half ). Each line represents FDR-significant association between genetic variants in miRNAs and clinical diagnoses belonging 
to a particular disease group
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Fig. 3 Forest-plots for FDR-significant associations of genetic variants located in the MHC region, including for miR-6891 and miR-3135b 
precursors. Dots represent odds ratio (OR) and 95%CI of the association between the variant (shown by different colour) and clinical conditions. The 
chromosomal position and corresponding effect alleles are presented in Additional file 1: Table S2
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Fig. 4 Enhanced volcano plots for PheWAS results of SNPs in seed (a), mature (b), or precursor genes (c) of miRNAs. Plots were only created 
for variants with at least one FDR-significant finding and shown for those with P > 1 ×  10–50. Full results with allele information are provided 
in Additional file 1: Table S2. The X-axis denotes effect estimates (log odds ratio) for corresponding effect alleles. Y axis indicates − log10 
of the association p values between each variant and clinical condition. Different colours of the dots represent different variants. Different 
shapes show different disease groups. Thresholds of significance are indicated by dashed blue (nominal), red (FDR < 0.05), and purple (Bonferroni 
or P < 0.05/(346 × 905)) lines
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Colocalisation and Mendelian randomisation analysis
We conducted colocalisation and Mendelian randomi-
sation  (MR) analysis for findings with significant miR-
eQTLs and the clinical conditions where large GWAS 
summary statistics are available. We used summary sta-
tistics for type 2 diabetes from DIAGRAM [47], type 1 
diabetes from Forgetta et  al. [48], and lipid traits from 
Global Lipid Genetics Consortium (GLGC) (total cho-
lesterol (TC), triglyceride (TG), low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C)) [45] to conduct colocalisation for miR-6891-3p 
and miR-6821-5p (Additional file 1: Table S5). We found 
evidence for colocalisation between miR-6891-3p and 
total cholesterol (PP H4 > 0.9). Suggestive evidence was 
also found between miR-6891-3p and triglycerides (PP 
H4 > 0.6) and HDL-C (PP H4 > 0.6). The same shared 
causal variant was identified for association between 
miR-6891-3p and TC and HDL-C (rs2596501), but not 
for TG (rs3130614) (Additional file 1: Table S5, Fig. S3). 
Further, our single-instrument MR analysis suggested 
protective effect of miR-6891-3p on the risk of hyperlipi-
daemia (OR 0.69, P = 1.0 ×  10–5) using the UK Biobank as 
the outcome dataset. This finding was replicated using 
the largest GWAS from GLGC as the outcome dataset 
[49], supporting the lowering effect of miR-6891-3p on 
TC, TG, LDL-C, and non-HDL-C (Table 3).

Discussion
This study presented an agnostic investigation of 346 
common genetic variants residing in miRNA-related 
sequences against a wide range of clinical diagnoses. 
We highlighted the top findings between variants in 
the MHC region with a range of diseases, the majority 
belonging to immune-related disorders. We demon-
strated the value of phenome-wide analysis in unravel-
ling the pleiotropy of miRNAs by studying a wide range 
of conditions beyond what has been previously inves-
tigated. For example, rs2168518 in the seed region of 
miR-4513 was known mainly for its association with the 
risk of cardiometabolic phenotypes, including fasting 
glucose, LDL-C, total cholesterol, and risk of coronary 
artery disease [50]. In the current analysis, rs2168518 
was also associated with osteoarthritis and interverte-
bral disc disorders. As another example, rs11614913, 
located in the mature region of miR-196a-3p, which 
was also known to be related to cardiometabolic traits 
[43, 51] and the risk of several cancers [41, 42], was 
associated with reflux esophagitis in this analysis. Sev-
eral findings belong to miRNAs that were more recently 
discovered in humans, such as miR-5094, miR-6821, 
miR-7107-3p, and miR-8064 and, thus, have not been 
extensively studied in the literature.

Fig. 4 continued
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Nearly half of the associations identified in our analy-
sis were for variants in the MHC region. We highlighted 
potential causal associations between miR-6891-3p and 
hyperlipidaemia through colocalisation and MR analy-
sis. miR-6891-3p is located in the MHC region, known 
as the most-dense region in the human genome that con-
tains a rich density of genes, is highly polymorphic, and 
has complex linkage disequilibrium (LD) structure that 
differs across populations [52]. The proteins encoded by 
human leukocyte antigen (HLA) genes in this region are 
essential in immune response, contributing to the pleio-
tropic role of this region in infectious, inflammatory, 
autoimmune diseases [53], and neurological disorders 
[54]. The genetic variants in the MHC region were previ-
ously shown to contribute substantially to genome-wide 
association analysis across an extended range of pheno-
types in the UK Biobank [55]. Current findings validate 
our approach by replicating the known pleiotropic nature 
of this region [56, 57]. Three variants in miR-6891-3p 
with significant PheWAS findings also affect the expres-
sion of HLA-B [58], the host gene where miR-6891-3p 
resides in its intron [59], in addition to many other 
nearby genes. The extensive LD structure in the MHC 
region makes it challenging to assign causal variants since 
multiple variants in high LD could have nearly equivalent 
statistical associations [52, 60]. For a particular disease 
risk, there could be interactive effects of different alleles 
within the same locus or across different loci (epistasis) 
[61, 62].

Our colocalisation and MR analysis indicated the pres-
ence of shared causal variant and potential aetiological 
effect of miR-6891-3p on the risk of hyperlipidaemia. 
While one of the assumptions for colocalisation is that 
the region is densely genotyped and that the true causal 
variant is among these genotyped variants [40], the com-
plex LD structure in the MHC region and the absence 

of substantial proportion of well-imputed variants in 
the tested region could have led to undetected shared 
causal variants between miR-6891-3p and other con-
ditions reported here. A previous study showed miR-
6891-3p targeting TLR4, thereby inhibiting inflammatory 
response in osteoarthritis [63]. For its counterpart, the 
target site of miR-6891-5p in IGHA1 and IGHA2 was 
identified, supporting the role of miR-6891-5p in IgA 
deficiency [64]. In  vitro experiments showed that 
rs4351242 reduced the level of miR-3135b and was asso-
ciated with age-related macular degeneration [8], while 
rs4285314 was associated with the risk of rheumatoid 
arthritis in the Chinese population [65]. We highlighted 
putative target genes relevant to the diseases for the asso-
ciations identified in seed region, in line with the con-
cept that target genes for miRNAs tend to be clustered 
according to their function [26]. These candidate target 
genes might be of interest for further studies to dissect 
underlying mechanisms. Our findings also indicate the 
value of using population-based genetic and clinical data 
to conduct a hypothesis-generating approach and com-
plement those from experimental studies.

This analysis has several strengths by taking advan-
tage of PheWAS as a powerful method to discover 
novel associations beyond what is known in the litera-
ture and reveal the pleiotropy of a genetic variant and 
miRNAs [66]. First, the UK Biobank has been deeply 
phenotyped and is genotyped using similar genotyp-
ing arrays, ensuring uniformity in the data and making 
it less likely to find spurious associations. Neverthe-
less, for some traits such as cancers, the UK Biobank 
might not have sufficient number of cases. To max-
imise power in our analysis, we utilised the full set 
of UK Biobank participants with available genotype 
and clinical diagnoses data, excluding related indi-
viduals and those who have withdrawn their consent. 

Table 3 Mendelian randomisation analysis

EA effect allele, SE standard error, GLGC global lipid genetics consortium, TC total cholesterol, TG triglyceride, LDL-C low-density lipoprotein cholesterol, HDL-C high-
density lipoprotein cholesterol, MR analysis was conducted using Wald ratio method

SNP EA Exposure SNP‑miRNA association SNP‑outcome association miRNA‑outcome 
association

Beta SE P Outcome Beta SE P Beta SE P

Outcome data from the UK Biobank

rs2276448 T miR-6891-3p 0.13 0.03 2.39 ×  10–6 Hyperlipidemia − 0.046 0.011 1.01 ×  10–5 − 0.37 0.08 1.01 ×  10–5

Outcome data from GLGC

rs2276448 T miR-6891-3p 0.13 0.03 2.39 ×  10–6 HDL-C − 0.003 0.002 1.42 ×  10–1 − 0.02 0.02 1.42 ×  10–1

TG − 0.010 0.002 6.46 ×  10–7 − 0.08 0.02 6.46 ×  10–7

TC − 0.019 0.002 4.79 ×  10–24 − 0.15 0.01 4.79 ×  10–24

LDL-C − 0.017 0.002 2.87 ×  10–19 − 0.14 0.02 2.87 ×  10–19

Non-HDL-C − 0.018 0.002 4.51 ×  10–14 − 0.14 0.02 4.51 ×  10–14
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Although there is a higher proportion of females in our 
study (54%), we adjusted for sex, among other covari-
ates in our analysis, which should have minimised the 
effect of confounding due to sex. Second, the use of 
ICD classification could minimise the misclassifica-
tion of cases and controls compared to a standard self-
reported based assignment. Third, clinical data could 
best represent the clinical importance of genotype to 
phenotype associations. A genetic variant could be 
associated with phenotype, but that does not always 
imply its clinical relevance.

This study has several limitations. First, the cur-
rent investigation is limited to clinical conditions 
that belong to binary traits. PheWAS could also be 
implemented on different outcomes, such as labora-
tory measurement  or imaging data [67]. Second, the 
current analysis is limited to miRNAs with common 
variants. Among 346 variants tested, only a small pro-
portion was found to affect corresponding mature 
miRNA levels. The remaining variants might affect 
the functionality rather than the level of miRNAs. As 
we are focusing on common variants, this observation 
may also imply that miRNAs have a tight constraint 
on their expression such that common variants do 
not show many effects. Most candidate variants are 
rare and, thus, are not available in our current dataset. 
This highlights the need to analyse the effect of rare 
variants on miRNA expression and their consequences 
on human diseases, such as by using whole-genome 
sequencing data.

Third, it is important to ascertain whether the same 
genetic variant affects miRNA level in tissues that are 
relevant to the diseases. When tissue-specific miR-
eQTLs become available, we could check whether the 
same candidate variant affects the expression of miR-
6891-3p in adipose tissue and conduct colocalisation 
and MR analysis using this data. An experimental study 
could also test whether the presence of certain allele 
of the candidate variant influences the corresponding 
miRNA abundance through transfection experiments 
[8, 68]. Our study could help in prioritising candidate 
miRNAs for in-depth candidate-based experiments in 
relevant cell or tissue type.

Fourth, since our study focused on participants of 
European ancestries, it is essential to replicate our find-
ings in different ancestral groups. Incorporating diverse 
ancestries could generate more transferrable findings 
for a wider population. Finally, despite using the largest 
GWAS on miRNA to date, we were not able to study all 
candidates and larger sample size might be needed to 
identify strong instruments for miRNAs. Therefore, we 
cannot rule out a possibility of undetected causal rela-
tionship between miRNAs and the diseases reported.

Conclusions
Our study offers an opportunity to investigate the 
effect of variants in miRNAs and discover their clinical 
importance using population-level data. We identified 
a potential causal effect of miR-6891-3p on the risk of 
hyperlipidaemia, as consistently supported by PheWAS, 
colocalisation, and MR analysis, highlighting the value 
of using large population genetic and clinical data to 
study the causal role of miRNAs in human diseases.
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