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Abstract 

Background Despite a growing number of publications highlighting the potential impact on the therapy outcome, 
rare genetic variants (minor allele frequency < 1%) in genes associated to drug adsorption, distribution, metabolism, 
and elimination are poorly studied. Previously, rare germline DPYD missense variants were shown to identify a subset 
of fluoropyrimidine-treated patients at high risk for severe toxicity. Here, we investigate the impact of rare genetic 
variants in a panel of 54 other fluoropyrimidine-related genes on the risk of severe toxicity.

Methods The coding sequence and untranslated regions of 54 genes related to fluoropyrimidine pharmacokinet-
ics/pharmacodynamics were analyzed by next-generation sequencing in 120 patients developing grade 3–5 toxicity 
(NCI-CTC vs3.0) and 104 matched controls. Sequence Kernel Association Test (SKAT) analysis was used to select genes 
with a burden of genetic variants significantly associated with risk of severe toxicity. The statistical association of com-
mon and rare genetic variants in selected genes was further investigated. The functional impact of genetic variants 
was assessed using two different in silico prediction tools (Predict2SNP; ADME Prediction Framework).

Results SKAT analysis highlighted DPYS and PPARD as genes with a genetic mutational burden significantly associ-
ated with risk of severe fluoropyrimidine-related toxicity (Bonferroni adjusted P = 0.024 and P = 0.039, respectively). 
Looking more closely at allele frequency, the burden of rare DPYS variants was significantly higher in patients with tox-
icity compared with controls (P = 0.047, Mann–Whitney test). Carrying at least one rare DPYS variant was associated 
with an approximately fourfold higher risk of severe cumulative (OR = 4.08, P = 0.030) and acute (OR = 4.21, P = 0.082) 
toxicity. The burden of PPARD rare genetic variants was not significantly related to toxicity. Some common variants 
with predictive value in DPYS and PPARD were also identified: DPYS rs143004875-T and PPARD rs2016520-T vari-
ants predicted an increased risk of severe cumulative (P = 0.002 and P = 0.001, respectively) and acute (P = 0.005 and 
P = 0.0001, respectively) toxicity.

Conclusion This work demonstrated that the rare mutational burden of DPYS, a gene strictly cooperating with DPYD 
in the catabolic pathway of fluoropyrimidines, is a promising pharmacogenetic marker for precision dosing of fluo-
ropyrimidines. Additionally, some common genetic polymorphisms in DPYS and PPARD were identified as promising 
predictive markers that warrant further investigation.
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Introduction
Human germline rare (minor allelic frequency 
[MAF] < 1%) and novel variants are increasingly being 
investigated for their promising pharmacogenetic value 
as predictive markers of pharmacological outcome of 
therapy [1–5]. Through integrated analysis of data from 
the 1000 Genomes Project and the Exome Sequencing 
Project, it was estimated that approximately 30–40% of 
the total functional variability in pharmacogenes (i.e., 
transporters, phase I and II enzymes, nuclear receptors) 
is caused by rare variants that are generally not cap-
tured by standard targeted genotyping tests [6]. On this 
basis, it has been hypothesized that rare genetic variants 
should account for a substantial portion of the unex-
plained inter-individual variability in drug metabolism 
phenotypes, pharmacokinetics, and adverse drug reac-
tion (ADR) risk, especially for certain drugs (e.g., warfa-
rin, irinotecan) [7]. Some confirmatory data come from 
a few clinical studies that found a significant association 
between the burden of genetic variants with low minor 
allele frequency in certain pharmacogenes and the occur-
rence of adverse drug reactions [3] or a poor efficacy out-
come [5] after pharmacological treatment.

We have previously shown that the burden of rare vari-
ants in the dihydropyrimidine dehydrogenase (DPYD, 
DPD) gene is significantly increased in patients experi-
encing severe toxicity to fluoropyrimidines (i.e., 5-fluo-
rouracil [5-FU] and its oral prodrug capecitabine) [2]. 
Severe toxicity to fluoropyrimidines remains an emerg-
ing concern in oncology, with up to 30% of patients 
experiencing severe toxicity, which can be fatal in 
approximately 1% of patients [8, 9]. Although a pre-
treatment DPYD testing increases the safety of treat-
ment with fluoropyrimidines and is now recommended 
by the European Medicines Agency [10], the currently 
validated four-variant panel (i.e., DPYD*2A, rs3918290; 
DPYD*13, rs55886062; c.2846A > T, rs67376798; 
c.1236G > A-HapB3; rs56038477) leaves many toxic 
events potentially related to patient genetic character-
istics unexplained [11]. In this context, testing rare and 
novel missense DPYD variants may collectively capture 
an appreciable additional fraction of patients at increased 
risk for severe fluoropyrimidine-related toxicity [2].

However, the metabolic pathway of fluoropyrimi-
dines is quite complex, and in addition to DPD, several 
other enzymes and metabolic proteins are involved in 
determining drug bioavailability and exposure [12]. Sev-
eral previous studies have explored the potential role of 

genetic polymorphisms in genes such as thymidylate syn-
thase (TYMS) or methylenetetrahydrofolate reductase 
(MTHFR) [12]. The results were encouraging for spe-
cific polymorphisms, even though no conclusive agree-
ment has yet been reached on the clinical validity of these 
markers. However, the potential impact of assessing the 
global or gene-specific burden of rare genetic variants in 
genes involved in the fluoropyrimidine pathway as a pre-
dictive marker for the risk of developing severe toxicity 
has, to our knowledge, never been evaluated.

The primary aim of the present work was to test the 
role of rare and novel variants in an expanded set of 
fluoropyrimidine-related genes in predicting the risk of 
severe fluoropyrimidine-related toxicity. To this end, we 
assessed the genetic sequence of a panel of 54 fluoropy-
rimidine-related genes using a next-generation sequenc-
ing (NGS)-based method in a clinically characterized 
group of 120 patients who experienced severe fluoro-
pyrimidine-related toxicity and 104 matched control 
subjects.

Patients and methods
Patient cohorts and clinical data collection
The cases (“toxicity group”) and controls (“no-toxic-
ity group”) included in the study were selected from a 
biobank of clinical cases prospectively collected at the 
Clinical and Experimental Pharmacology Unit of the 
Centro di Riferimento Oncologico (CRO), IRCCS, in 
Aviano (PN), Italy [13]. The selection criteria have been 
published previously [2]. Briefly, patients in the “toxic-
ity group” (n = 120) met the following criteria: (1) histo-
logically confirmed diagnosis of solid cancer; (2) available 
peripheral biological blood sample; (3) available detailed 
clinical data (4); treatment with fluoropyrimidines 
(5-FU or capecitabine); (5) absence of any acknowledged 
DPYD risk genetic variant (i.e., DPYD*2A, DPYD*13, 
c.2846A > T, c.1236G > A-HapB3); and (6) development of 
at least one episode of hematologic or non-hematologic 
fluoropyrimidine-related toxicity of grade ≥ 3 accord-
ing to the Common Terminology Criteria for Adverse 
Events (CTCAE) v.3.0. Patients in the “no-toxicity group” 
(n = 104) were selected according to the same criteria 
as above, with the exception of item (6), and were not 
allowed to be statistically different overall from the “tox-
icity group” with respect to key clinical–demographic 
characteristics (e.g., sex, age, tumor type, setting of treat-
ment, chemotherapy regimen).

Keywords DPYS, Rare variant, Fluoropyrimidine, Toxicity, Next-generation sequencing, Clinical implementation, 
PPARD
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The method for retrieving clinical and toxicity data 
from patients’ medical records was already described 
[13]. The maximum grade of toxicity experienced by the 
patients during the entire chemotherapy course was con-
sidered for patients’ selection.

All patients in the study were self-reported Caucasian. 
The study protocol complied with the ethical guidelines 
of the 1975 Declaration of Helsinki. The protocol was 
approved by the Comitato Etico Indipendente-Centro di 
Riferimento Oncologico di Aviano. All patients provided 
written informed consent for genetic analysis before 
entering the study. All experiments were carried out in 
accordance with the relevant guidelines and regulations 
of Centro di Riferimento Oncologico di Aviano.

Candidate genes and polymorphism selection
Candidate genes were selected based on a literature 
search (PubMed-MEDLINE) focusing on those encoding 
proteins involved in fluoropyrimidine-related pathways 
(e.g., drug metabolism, folate pathway, drug membrane 
transporters, gene transcriptional regulators, epigenetic 
control). In the end, a panel of 54 genes was selected and 
included in the pharmacogenetic analysis. The custom 
design of the panel was performed using NimbleDesign 
software based on Genome Build hg19/GRCh37 (Febru-
ary 2009) and captured the genetic variability of all exons 
and their adjacent splice junctions (approximately 35 
bases upstream and downstream of the exon) as well as 
the 5’ and 3’ untranslated regions (UTRs). For two genes 
of particular relevance for fluoropyrimidine-response 
pathway (TYMS, MTHFR), an additional 3000 bp was 
added in 5′ of the first exon of each gene to include 
potential proximal promoters. The list of genes included 
in the panel (n = 54), the subpathway (n = 6) to which they 
belong, and the number of bases covered by the design 
for each gene are shown in Additional file  1: Table  S1. 
The sequencing data of the DPYD gene have been pre-
viously analyzed and published [2]; therefore, the DPYD 
gene is not included in the present work.

Library preparation and sequencing
Genomic DNA was extracted from peripheral blood 
samples using the BioRobot EZ1 automated extractor in 
association with the “EZ1 DNA Blood Kit 350μl” kit (Qia-
gen) and stored at + 4  °C. To improve the quality of the 
extracted DNA, DNA purification was also performed 
using Agencourt AMPure XP beads (Beckman Coulter). 
The quality (i.e., 260/280 and 260/230 ratio) and quan-
tity of DNA samples were assessed using the Nanodrop 
spectrophotometric method (Thermo Scientific) and the 
Quantus™ Fluorometer (Promega), respectively.

Gene sequencing was performed using a custom hybrid 
capture-based Roche/NimbleGen assay. DNA library 

preparation for all samples was conducted on 100 ng of 
input purified DNA. Library preparation was performed 
according to the manufacturer’s instructions in the Seq-
Cap EZ HyperCap Workflow User’s Guide v 2.3 (Roche). 
Briefly, genomic DNA was enzymatically fragmented 
and linked to the index; after adapter ligation, double-
sided selection was performed to obtain fragments of 
approximately 300–350bp, which were then amplified. 
Each library was pooled before in-solution hybridiza-
tion to a custom NimbleGen SeqCap EZ Choice Library 
(Roche) of complementary oligonucleotide DNA baits. 
After washing, the captured libraries are amplified by 
PCR. The concentration of single and pooled librar-
ies was evaluated by Quantus™ Fluorometer (Promega), 
while the quality and size distribution were assessed by 
2200 TapeStation system (Agilent). Pooled libraries were 
sequenced on a Miseq platform (Illumina), according to 
the manufacturer’s instructions, using a 300-cycle kit 
with 2 × 150 paired-end read setup. NGS sequencing data 
were validated by Sanger sequencing with a 100% of con-
cordance [2].

Bioinformatic analysis, variants annotation, and functional 
prediction
Raw sequencing data were quality checked using FastQC 
[14] and aligned to Human reference genome (hg19/
GRCh37) using BWA-MEM software [15]. Alignment 
sequencing data were quality checked using Qualimap 
[16] and removed for duplicated sequences using Picard 
[17]. Bedtools2 [18] was used to compute mapped reads 
for each genomic position specified in the manifest file 
of the panel. Mutect2 from GATK4.1 was employed for 
calling germline variants and Oncotator for variant anno-
tation. To reduce the number of false-positive calls and 
obtain a list of confident genetic variations, variants with 
at least one of the following features were screened out: 
(1) Variant Classification = “nontranslated intergenic 
regions (IGR)” or “intron”; (2) read position = “FAIL”; 
(3) bad haplotype = “FAIL”; (4) base quality = “FAIL”; (5) 
mapping quality = “FAIL”; (6) strand artifact = “FAIL”; (7) 
clustered events = “FAIL”; (8) fragment_length = ”FAIL”; 
(9) t_lod = ”FAIL”; (10) multiallelic = ”FAIIL”; (11) read 
depth < 50X; (12) variant allele frequency < 0.15 to reduce 
the risk of false positive calls; (13) variants in genomic 
regions outside the panel. Unsupervised hierarchical 
clustering with Ward.D2 linkage and Euclidean distance 
was used to identify patient groups characterized by low 
coverage over the gene panel. Moreover, all genes defined 
by a median coverage < 50 in at least 95% of the entire 
cohort were excluded from downstream analysis.

MAF from the 1000 Genomes database (European 
population) was used to classify germline variants into 
very rare (MAF ≤ 0.1%), rare (0.1% < MAF < 1%), common 
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(MAF ≥ 1%), and novel (MAF not registered; absence of 
rs ID in dbSNP database [19]. Only in case of no data 
available in 1000 Genomes European population data-
base, ExAC database (non-Finnish European population) 
was considered.

The PredictSNP algorithm [20] was used to predict the 
functional impact of the identified variants by classify-
ing them into deleterious and tolerated. For the missense 
variants, an alternative method based on absorption, dis-
tribution, metabolism, and excretion (ADME)-optimized 
prediction framework (APF) of Zhou et al. [21] was used. 
Particularly, seven in silico functional prediction algo-
rithms from Ensembl’s variant effect predictor (VEP) [22] 
were used (i.e., SIFT, Sorting Intolerant From Tolerant; 
Polyphen-2, Polymorphism Phenotyping v2; LRT, Likeli-
hood Ratio Test; MutationAssessor; PROVEAN, Protein 
Variation Effect Analyzer; VEST3, Variant Effect Scoring 
Tool; CADD, Combined Annotation-Dependent Deple-
tion) with the threshold of deleteriousness optimized by 
APF. To identify variants predicted to be deleterious, the 
prediction score (PS) of each variant’s was calculated as 
Ndel / Ntot, where Ntot is the total number of algorithms 
available for predictions and Ndel is the number of algo-
rithms that predicted the variant to be deleterious. 
The missense variants with PS ≥ 0.5 were classified as 
“deleterious.”

Statistical analysis
Socio-demographic and clinical characteristics were 
reported as proportions, and differences between toxicity 
and no-toxicity groups were assessed using Fisher’s exact 
test.

The flowchart of the study is illustrated in Fig.  1. The 
association between variants and toxicity was evaluated 
through the Sequence Kernel Association Test (SKAT) 
[23]. Due to the small sample size, it was not possible to 
evaluate only rare variants, so common and rare variants 
were combined in the screening phase to select candidate 
genes/pathways. The R package SKATjoint was used. The 
algorithm SKAT was applied at two levels of grouping: a) 
at the gene level, where all variants in a gene region were 
combined; b) at the pathway level, where all variants in 
genes of the same pathway were combined. For each gene 
or pathway, the P-value was further adjusted according to 
the Bonferroni correction taking into account the num-
ber of groups tested within each level of grouping.

For genes and pathways that emerged from SKAT 
screening, the number of rare variants was counted for 
each patient, distinguishing by variant type and MAF 
frequency (i.e., < 1%, < 0.1%, novel). For each group, the 
mean number of variants was calculated as the ratio 
between the total number of variants and the number 
of patients. Considering the low frequency, the mean 

number of variants was expressed per 100 patients 
by multiplying it by 100; differences between groups 
were evaluated through Mann–Whitney test. For com-
mon variants, the genotype for each polymorphism was 
reported, and differences between the two study groups 
were evaluated through the Fisher’s exact test.

Toxicity risk was assessed by odds ratio (OR) and cor-
responding 95% confidence intervals (CI) estimated using 
an unconditional logistic regression model, adjusting for 
sex, age, cancer site, treatment setting, and fluoropyri-
midines. Statistical significance was claimed for p < 0.05 
(two-sided). The sample size was determined accord-
ing to the criterion of feasibility by including all patients 
available in our biobank who met the inclusion criteria. 
Statistical analyses were performed using SAS System 9.4 
and R 4.1.

Results
Sequencing and patient characteristics
A total of 224 fluoropyrimidine-treated patients (n = 120 
in the “toxicity group”; n = 104 in the “no-toxicity group”) 
were sequenced by NGS. After quality control, 11 of the 
224 sequenced samples were excluded from analysis 
because they did not pass the quality check of sequencing 
data by fastQC. All of these samples were characterized 
by a low number of produced paired-end reads (number 
of reads < 1,000,000) and a sequence length > 220 bp ver-
sus the expected 150–200 bp, indicating a failure in the 
sequencing step. An additional 35 samples were excluded 
from analysis based on the result of unsupervised clus-
ter analysis, which classified the sample as “good” or 
“poor” based on coverage. Thus, the final “toxicity group” 
included 82 patients, whereas the “no-toxicity group” 
included 96 patients. Nine genes (i.e., UPRT, TYMP, 
RXRA, TK1, MIR27B, MIR27A, MIR23A, KDM6A, 
KDM6B) were excluded from the analysis because of 
unfavorable coverage (i.e., not meeting the criteria of 
median depth coverage of 50X for the genes defined by 
the panel in at least 95% of the samples).

Overall, the coverage analysis showed a median num-
ber of 542,162 mapped reads (range: 61,074–1563800) 
with a median percentage of reads at 1 × and 10x (depth 
of coverage) of 86% and 2%, respectively. Looking at cov-
erage at the genomic level, the median depth at the gene 
level was homogeneous between the “toxicity” and “no-
toxicity” groups, allowing comparison of the two cohorts.

The main clinical–demographic features of the two 
study populations are shown in Table 1. The two groups 
were balanced overall in terms of clinical–demographic 
characteristics, with the exception of treatment setting, 
as the adjuvant setting was more frequent among the 
controls while first-line or further lines of treatment 
were more frequent among the cases. Of the 82 patients 
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«TOXICITY» GROUP (n=120)
Pa�ents experiencing grade 3-5 toxicity without
DPYD known risk variant (i.e., DPYD*2A, DPYD*13,
c.2846A>T, c.1236G>A-HapB3)

«NO-TOXICITY» GROUP (n=104)
Pa�ents not experiencing grade 3-5 toxicity

PATIENTS WITH SOLID CANCER TREATED WITH 
FLUOROPYRIMIDINE-BASED THERAPY

NEXT-GENERATION SEQUENCING 
PROFILING OF GERMLINE VARIANTS.

Roche Custom panel: 54 GENES
(coding region, splicing region, UTRs)

• Variants annota�on 
• Func�onal predic�on by in silico tool
• MAF - based variant classifica�on *

(rare < 1%  ≤ common variants)

VARIANT BURDEN ANALYSIS
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Fig. 1 Flowchart of the study. a The study population included a total of 224 patients with solid cancers treated with fluoropyrimidine (FL)-based 
therapy divided into cases (“toxicity group”) and controls (“no-toxicity group”). b Blood-derived DNA from cases and controls was genotyped 
using a customized targeted next-generation sequencing panel comprising 54 genes. c Raw sequencing data were processed through a data 
analysis pipeline that allowed identification/annotation of germline genetic variants. Variant classification based on minor allele frequency (MAF, 
common ≥ 1% and rare < 1%) and functional annotation of variants were also performed. d Variant analysis was performed using the Sequence 
Kernel Association Test (SKAT) for common and rare variants combined (SKATjoint). Variants were grouped at the gene and subpathway levels. 
These analyses allowed identification of candidate genes associated with risk of severe FL-related toxicity. e The predictive role of common 
or rare variants in the selected candidate genes for the risk of developing severe FL-related toxicity was further investigated. *MAF-based variant 
classification: very rare, MAF ≤ 0.1%; rare, 0.1% < MAF < 1%; common, MAF ≥ 1%; novel, MAF not registered + no rs ID. In SKAT analysis, very rare 
and novel variants are included in the rare group
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in the “toxicity group,” 50 (61.0%) developed grade 3 
toxicity and 32 (39.0%) developed grade 4 toxicity as 
the maximum grade of hematologic or non-hemato-
logic toxicity experienced during the entire course of 
treatment. Forty-seven of 82 patients (57.3%) devel-
oped grade ≥ 3 hematologic toxicity, with neutropenia 
being the most common adverse event (35/47; 74.5%). 
Fifty-eight of 82 patients (70.7%) developed grade ≥ 3 
non-hematologic toxicity, with diarrhea being the most 
common adverse event (27/58; 46.6%). Thirty-five of 
82 patients (42.7%) experienced severe hematologic 
or non-hematologic toxicity within the first cycle of 

treatment (acute toxicity, cycle ≤ 1), and forty-seven 
patients (57.3%) after the first cycle.

Variants identified
A total of 7,420 and 7,896 germline variants were called 
against the reference genome in the “toxicity” and “no-
toxicity” groups, respectively. The mean coverage (read 
depth) of the identified genetic variants was 97 (range: 
50–530) and 75 (range: 50–214) for the “toxicity” and 
“no-toxicity” groups, respectively.

A total of 471 unique genetic variants were identified 
(426 single-nucleotide polymorphisms [SNP], 25 dele-
tions [DEL], 17 insertions [INS], 3 double-nucleotide 
polymorphisms [DNP]) in the “toxicity group” (Fig. 2A). 
Of these, 275/471 (58.4%) were common (MAF ≥ 1%) and 
196/471 (41.6%) were rare/very rare (MAF < 1%) or novel 
variants. Thirty-six of the 275 (13.1%) common variants 
and 45 of the 196 (23.0%) rare/very rare or novel vari-
ants were predicted as deleterious. Most of the identified 
variants were in the 3’ region (213/471, 45.2%). Of the 
remaining variants, 105/471 (22.3%) were synonymous, 
91/471 (19.3%) were missense and 43/471 (9.1%) were in 
the 5’ region.

In the “no-toxicity” group, 466 unique genetic variants 
were identified (414 SNP, 31 DEL, 17 INS, 3 DNP, 1 oli-
gonucleotide polymorphism [ONP]). Of these 274/466 
(58.8%) were common (MAF ≥ 1%) and 192/466 (41.2%) 
were rare/very rare (MAF < 1%) or novel variants. Thirty-
five of the 274 (12.8%) common variants and 44 of the 
192 (22.9%) rare/very rare or novel variants were classi-
fied as deleterious. Most of the identified variants were 
in the 3’ region (220/466, 47.2%). Of the remaining vari-
ants, 104/466 (22.3%) were synonymous variants, 85/466 
(18.2%) were missense variants and 41/466 (8.8%) were in 
the 5’ region (Fig. 2B).

The frequencies of common and rare (including novel) 
variants by gene and subpathway in the “toxicity” and 
“no-toxicity” groups are shown in Figs. 3 and 4, respec-
tively. As can be seen from the figures, the frequency 
distribution of the common variants in the two groups is 
similar at both at gene and subpathway level, while the 
frequency distribution of the rare variants in the two 
groups is remarkably different.

Variants burden analysis
The role of rare/novel and common variants and path-
ways in the risk of developing severe fluoropyrimidine-
related toxicity was assessed by SKATjoint analysis. The 
list of genes and related subpathways is reported in Addi-
tional file  1: Table  S1. The SKAT statistics were calcu-
lated considering all variants, variants in the UTRs, and 
missense variants, grouping them also for the functional 

Table 1 Socio-demographic and clinical characteristic of solid 
cancer patients enrolled in the study

*Maximum grade of hematological or non-hematological toxicity experienced 
by the patients

Toxicity 
group
(n = 82)

No-toxicity 
group
(n = 96)

Fisher’s 
exact test
(P)

n (%) n (%)

Sex

 Female 46 (56.1) 46 (47.9)

 Male 36 (43.9) 50 (52.1) 0.295

Age, years (median, range) 62 (52–68) 64 (51–68) 0.511

Cancer type

 Colon 49 (59.8) 66 (68.8)

 Rectum 14 (17.1) 17 (17.7)

 Breast 5 (6.1) 5 (5.2)

 Stomach 4 (4.9) 1 (1.0)

 Head and neck 1 (1.2) 3 (3.1)

 Pancreas 1 (1.2) 3 (3.1)

 Others 2 (2.4) 1 (1.0)

 Unknown 6 (7.3) 0 (0.0) 0.078

Chemotherapy

 Fluoropyrimidines

 5-Fluorouracil 68 (82.9) 81 (84.4)

 Capecitabine 14 (17.1) 15 (15.6) 0.840

 Monotherapy 8 (9.8) 7 (7.3)

 Association with oxaliplatin 18 (22.0) 38 (39.6)

 Association with irinotecan 38 (46.3) 35 (36.5)

 Association with other 
drugs

18 (22.0) 16 (16.7) 0.091

Therapy setting

 Neo-adjuvant 5 (6.1) 8 (8.3)

 Adjuvant 22 (26.8) 42 (43.8)

 First-line or further lines 55 (67.1) 46 (47.9) 0.034

Max toxicity grade*

 3 50 (61.0) –

 4 32 (39.0) –



Page 7 of 15De Mattia et al. Human Genomics           (2023) 17:99  

effect. The results of the SKATs analysis are shown in 
Table 2.

The DPYS (all variants, P = 0.024) and the PPARD (all 
variants deleterious, P = 0.039; 3’UTR/5’UTR variants 
deleterious, P = 0.022) genes were identified to signifi-
cantly impact the risk of developing fluoropyrimidine-
related toxicity by applying the Bonferroni correction. 
At subpathway level, “nuclear receptor” (all variants, 
p = 0.033) and “membrane transporter” (all variants, 
P = 0.037) resulted the classes of genes significantly asso-
ciated with the risk of severe toxicity.

Rare variants and risk of toxicity
Based on the results of the SKAT analysis (Table 2), the 
role of the burden of rare and novel variants in the DPYS 
and PPARD genes on the risk of severe fluoropyrimidine-
related toxicity was further investigated. The complete 
list of rare (MAF < 1%) and novel variants identified in 
the DPYS and PPARD genes in the “toxicity” and “no-tox-
icity” groups is shown in the Additional file 1: Tables S2 
and S3, respectively.

As for the DPYS gene, it was significant in the “all 
variants” group: seven and four rare/very rare variants 
were detected in the case and control groups, respec-
tively (Additional file 1: Table S2). The mean number of 
DPYS variants per 100 patients was significantly higher 
in the “toxicity” group that in the “no-toxicity” group 
(P = 0.047). The number of patients with at least one rare 
DPYS variant differed between groups (12.2% and 4.2% 
in the “toxicity” and “no-toxicity” groups, respectively), 
albeit with borderline significance (P = 0.055). Carry-
ing at least one rare DPYS variant was associated with 
an approximately fourfold higher risk of severe cumu-
lative toxicity (P = 0.030) after accounting for potential 

confounders in the multivariable model (Table  3). 
The same effect was detected for acute severe toxicity, 
although not significantly (P = 0.082). It was confirmed 
that the presence of at least one rare DPYD missense 
variant in the present study population increased the risk 
of cumulative severe toxicity, as previously published [2], 
although not significantly due to the small sample size 
(OR = 6.03; 95% CI 0.65–56.27; P = 0.115). After exclud-
ing five cases and one control with rare DPYD missense 
mutations from the analysis, the rare DPYS variants 
maintained their negative impact on the risk of severe 
cumulative toxicity (OR = 4.06; 95% CI 1.12–14.81; 
P = 0.115).

The PPARD gene was significantly associated with tox-
icity in both “all variants deleterious” and “3’UTR/5’UTR 
variants deleterious” groups; the two groups overlapped 
because all deleterious variants identified were in the 
UTR region (Additional file  1: Table  S3). The mean 
number of PPARD variants per 100 patients was not 
significantly higher in the “toxicity” group than in the 
“no-toxicity” group (P = 0.472). The number of patients 
with at least one rare PPARD variant was not signifi-
cantly different between groups (P = 0.595). Carrying at 
least one rare PPARD variant was not associated with 
the risk of experiencing severe cumulative (P = 0.759) or 
acute (P = 0.777) severe toxicity in multivariate analysis 
(Table 3).

Common variants and risk of toxicity
The role of DPYS and PPARD polymorphisms 
(MAF > 1%) as predictors of severe toxicity was further 
investigated. The toxicity risk for each common DPYS 
(all variants) and PPARD (deleterious 3’UTR/5’UTR 
variants) variant identified by NGS analysis was 

A) TOXICITY GROUP B) NO-TOXICITY GROUP
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Fig. 2 Pie chart visualizing the type of genetic germline variants identified in groups. A “toxicity” and B “no-toxicity” groups. “Other” variants include: 
De novo Start OutOfFrame, Frame Shift Del, Frame Shift Ins, In Frame Ins, and Start Codon SNP
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Fig. 3 Frequency of common (MAF ≥ 1%) and rare (MAF < 1%, including novel) variants according to gene in patients with and without toxicity
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compared between the “toxicity” and “no-toxicity” 
groups and is summarized in Table 4.

Two common polymorphisms were detected in the 
DPYS gene, the synonymous rs2298840 (c.216C > T; p.
Phe72Phe) and the 3’UTR rs143004875 (g.chr8:105391
734_105391735insT). Remarkably, these variants were 
identified only in the “toxicity” group, whereas they 
were not detected in the “no-toxicity” group. Although 
statistical analysis is hampered by the small number of 
cases, the rs143004875-T variant allele was associated 
with an increased risk of severe toxicity for both cumu-
lative (P = 0.002) and acute toxicity (P = 0.005). A simi-
lar trend was observed for rs2298840, with all patients 
carrying the polymorphic A-allele developing severe 
toxicity.

As for the PPARD gene, all three identified deleteri-
ous variants are located in the UTR region: rs2016520 
(5’UTR, g.chr6:35378778C > T), rs9658170 (3’UTR, 
g.chr6:35394504G > A), and rs9658167 (3’UTR, 
g.chr6:35394080G > A). Among these variants, rs2016520 
was associated with the risk of developing severe cumu-
lative (P = 0.001) and acute toxicity (P = 0.0001). Particu-
larly, patients with the rs2016520-TT genotype had about 
threefold and sixfold higher risk of severe cumulative and 
acute toxicity, respectively.

To investigate in detail the functional role of the DPYS-
rs2298840, DPYS-rs143004875, and PPARD-rs2016520 
polymorphisms, bioinformatic analysis was performed 
using HaploReg v4.1 [24], RegulomeDB v2.0.3 [25], and 
Ensembl’s VEP-Ensembl GRCh37release release 110—
July 2023 [22]. The methods and detailed results are 
summarized in Additional file  1: Table  S4. In brief, the 
synonymous DPYS-rs2298840 variant could have a mod-
erate impact on gene functionality and/or expression, as 
it broadly alters regulatory chromatin status and con-
sensus sequence for transcription factors and exhibits 
eQTL hits. An impact on the splicing mechanism could 
also not be excluded. All these effects were summarized 
by a RegulomeDB rank score of 3a (i.e., transcription 
factors binding + any motif + DNase peak) and a prob-
ability score of 0.61235. The CADD score is 14.91. A 
similar functional prediction was obtained for the 3’UTR 
DPYS-rs143004875 polymorphism, although the effects 
appear to be smaller (RegulomeDB rank score = 6 [i.e., 
motif hit], probability score = 0.22365; CADD score not 
available). The 5’UTR PPARD-rs2016520 variant, that is 
in linkage (r2 ≥ 0.8) with 17 additional polymorphisms, 
could have a moderate functional consequence since it 
affects chromatin architecture and DNA accessibility 
for gene transcription, it is located in a transcriptional 
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Table 2 Gene and pathway-level SKAT output

Common and rare variants (SKATjoint)a

Gene (HGNC) crude.P BH.P Bonf.P

All variants

 ABCB4 0.041 0.196 1

 ABCC3 0.020 0.136 0.882

 ABCC4 0.053 0.196 1

 ABCC5 0.021 0.136 0.943

 CYP2A6 0.010 0.136 0.432

 DPYS 0.001 0.024 0.024
 NR1I3 0.049 0.196 1

 PPARD 0.022 0.136 0.954

 SLC22A7 0.015 0.136 0.645

 VDR 0.003 0.066 0.131

 DLG5 0.052 0.196 1

 RRM2 0.044 0.196 1

All variants deleterious

 ABCB4 0.0168 0.3019 0.604

 NR1H3 0.0336 0.4036 1

 PPARD 0.0011 0.0389 0.039
 VDR 0.0497 0.4475 1

3’UTR/5’UTR 

 ABCC5 0.030 0.304 1

 CES1 0.023 0.304 0.925

 DPYS 0.002 0.072 0.072

 MTHFR 0.045 0.366 1

 VDR 0.018 0.304 0.754

3’UTR/5’UTR deleterious

 PPARD 0.001 0.022 0.022
Missense

 ABCB4 0.010 0.306 0.376

 CYP2A6 0.051 0.306 1

 ENOSF1 0.045 0.306 1

 NR1H3 0.048 0.306 1

 RRM2 0.018 0.306 0.645

 VDR 0.050 0.306 1

Missense deleterious

 ABCB4 0.017 0.278 0.520

 NR1H3 0.048 0.385 1

 RRM2 0.018 0.278 0.555

 VDR 0.050 0.385 1

Common and rare variants (SKATjoint)a

Subpathway crude.P BH.P Bonf.P

All variants

 Nuclear Receptor 0.004 0.018 0.033
 Membrane transporter 0.004 0.018 0.037

All variants deleterious

 Nuclear receptor 0.008 0.075 0.075

3’UTR/5’UTR 

 Nuclear receptor 0.049 0.212 0.444
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binding element with a resulting impact on the regula-
tion of protein expression (eQTL hits) and regulates the 
splicing mechanism. All of these effects were summa-
rized by a RegulomeDB rank score of 5 (i.e., transcription 
factors binding or DNase peak) and a probability score of 
0.13454. The CADD score is 16.81.

Discussion
The burden of rare germline variants in pharmacogenes 
appears to be a promising marker for personalization of 
pharmacological treatment. Specific fields of pharma-
cotherapy, such as the use of fluoropyrimidines in can-
cer patients, are severely affected by the occurrence of 
adverse drug reactions, and currently used pharmacoge-
netic markers, such as DPYD genetic variants, are very 
effective in reducing the risk of toxicity in carriers but 
leave many toxicity cases unexplained.

In this study, we explored the predictive effect of rare 
variants burden in genes other than DPYD on the occur-
rence of severe toxicity to fluoropyrimidines. The main 
finding was the identification, for the first time, of the 

critical role of rare variant burden (MAF < 1%) in the 
DPYS gene as predictive a marker for the risk of severe 
fluoropyrimidine-related toxicity.

Dihydropyrimidinase (DPYS, DHPase), also known as 
5,6-dihydropyrimidine amidohydrolase, is the second 
enzyme in the 3-step catabolic pathway of fluoropyrimi-
dines downstream of the action of DPD. In vitro studies 
have shown that alterations in DHPase activity modulate 
the clearance of 5-FU and that decreased DHPase func-
tionality is associated with increased sensitivity to 5-FU 
[26]. Moreover, DPYS genetic variants have been found 
to contribute to inter-individual predisposition to the 
development of severe fluoropyrimidine-related toxicity, 
particularly in Asian populations [27–31]

This work is the first to report that the burden of 
DPYS rare variants, including novel variants, identified 
by NGS, is associated with the risk of fluoropyrimidine-
related toxicity. Carriers of rare DPYS variants had an 
approximately a fourfold increased risk of developing 
severe to fatal fluoropyrimidine-related toxicities in the 
first treatment cycle as well as during the entire course 

Only the associations with crude P < 0.05 are reported. Association with also Bonferroni P < 0.05 is evidenced in bold
a P values were estimated adjusting for sex, age, cancer site, treatment setting, and fluoropyrimidines

The variants are classified as common (MAF ≥ 1%) and rare (MAF < 1%). Novel variants (MAF not registered; absence of rs ID in dbSNP database) are included in the rare

Table 2 (continued)

Common and rare variants (SKATjoint)a

Subpathway crude.P BH.P Bonf.P

3’UTR/5’UTR deleterious

 Nuclear receptor 0.016 0.095 0.095

Missense

 Nuclear receptor 0.044 0.229 0.395

Missense deleterious

 –

Table 3 Germline burden of rare (including novel) genetic variants and the risk of developing severe fluoropyrimidine-related toxicity

The risk of acute toxicity (cycle ≤ 1) was also considered
a Odds ratio (OR) and corresponding 95% confidence intervals (CI) were estimated from multinomial regression model, adjusting for sex, age, cancer site, treatment 
setting, and fluoropyrimidines

* (Number of genetic variants/total number of patients)*100

Gene Mean number of mutations 
per 100 patients*

Patients with mutations OR (95% CI)a P value Cycle ≤ 1

Toxicity M-W test
(P)

Toxicity Fisher’s 
exact test
(P)

OR (95% CI)a P

No Yes No Yes

n (%) n (%)

All variants

DPYS 4.2 13.4 0.047 4 (4.2) 10 (12.2) 0.055 4.08 (1.15–14.49) 0.030 4.21 (0.83–21.33) 0.082

All variants deleterious

PPARD 1.0 2.4 0.472 1 (1.0) 2 (2.4) 0.595 1.48 (0.12–17.73) 0.759 1.54 (0.08–31.18) 0.777
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of chemotherapy. It could be hypothesized that DHPase 
deficiency, possibly caused by rare variants that nega-
tively affect enzyme activity, leads to accumulation of 
dihydrofluorouracil  (FUH2), which can be converted back 
to 5-FU by the reversible reaction catalyzed by DPD, 
eventually leading to overexposure and toxicity [32]. 
Interestingly, in our study, the predictive value of the rare 
DPYS variants remained significant even when patients 
previously identified as carrying a rare DPYD missense 
associated with severe toxicity risk [2] were excluded 
from the analysis, suggesting an independent effect of the 
two pharmacogenetic markers. Thus, these data demon-
strated the potential role of rare genetic DPYS variants 
in personalizing fluoropyrimidine-based therapy, espe-
cially in cancer patients with normal DPYD activity, and 
further research efforts are certainly needed to translate 
these findings into clinical practice.

In addition to the rare variants burden, the current 
study identified common polymorphisms in the DPYS 
gene as further promising markers of toxicity. Particu-
larly, two common variants, the synonymous rs2298840 
and the 3’UTR rs143004875, were detected only in the 

“toxicity” group and not in the “no-toxicity” group and 
could therefore be considered for the first time as poten-
tially significant predictors of the risk of developing 
severe fluoropyrimidine-related toxicity. No functional 
data on the effects of the rs2298840 and rs143004875 
polymorphisms on DHPase activity were found in the 
published literature. However, a preliminary in silico 
assessment suggested a potential moderate functional 
impact, particularly for the rs2298840 variant, which 
was largely associated with an alteration in regulatory 
chromatin states and the consensus sequence for tran-
scription factors, ultimately potentially affecting gene 
expression.

As for common polymorphisms, promising data were 
also found for peroxisome proliferator-activated receptor 
delta (PPARD), a member of the nuclear receptors super-
family that includes transcription factors that play crucial 
roles regulating drug metabolism enzymes and mem-
brane transporter genes [33–35]. A pharmacological role 
of PPARD has been suggested, and its activation has been 
shown to contribute to the modulation of the cytotoxic 
effects of antineoplastic drugs [35]. Interestingly, a recent 

Table 4 Risk of toxicity according to common polymorphisms of DPYS (all variants) and PPARD (variants in the 3’UTR/5’UTR)

P value < 0.05 is evidenced in bold
a Odds ratio (OR) and corresponding 95% confidence intervals (CI) were estimated from multinomial regression model, adjusting for sex, age, cancer site, treatment 
setting, and fluoropyrimidines

Cumulative toxicity Acute toxicity (Cycle ≤ 1)

Yes (n = 82) No (n = 96) OR (95% CI)a Yes (n = 37) No (n = 96) OR (95% CI)a

n (%) n (%) n (%) n (%)

DPYS-rs2298840

GG 80 (97.6) 96 (100) Ref 36 (97.3) 96 (100) Ref

GA 2 (2.4) 0 (0.0) – 1 (2.7) 0 (0.0) –

Fisher’s exact test: P = 0.211 Fisher’s exact test: P = 0.278

DPYS-rs143004875

-/- 74 (90.2) 96 (100) Ref 33 (89.9) 96 (100) Ref

-/T 8 (9.8) 0 (0.0) – 4 (10.8) 0 (0.0) –

Fisher’s exact test: P = 0.002 Fisher’s exact test: P = 0.005
PPARD-rs2016520

CC 28 (34.2) 59 (61.5) Ref 8 (21.6) 59 (61.5) Ref

CT 22 (26.8) 18 (18.8) 2.60 (1.14–5.87) 14 (37.8) 18 (18.8) 6.54 (2.16–19.80)

TT 32 (39.0) 19 (19.8) 3.54 (1.66–7.56) 15 (40.5) 19 (19.8) 5.96 (2.06–17.20)

Fisher’s exact test: P = 0.001 Fisher’s exact test: P = 0.0001
PPARD-rs9658170

GG 80 (97.6) 93 (96.9) Ref 36 (97.3) 93 (96.9) Ref

GA 2 (2.4) 3 (3.1) 0.52 (0.07–4.09) 1 (2.7) 3 (3.1) 0.37 (0.03–5.05)

Fisher’s exact test: P = 1.000 Fisher’s exact test: P = 1.000

PPARD-rs9658167

GG 79 (96.3) 93 (96.9) Ref 35 (94.6) 93 (96.9) Ref

GA 3 (3.7) 3 (3.1) 1.75 (0.32–9.43) 2 (5.4) 3 (3.1) 3.57 (0.49–26.19)

Fisher’s exact test: P = 1.000 Fisher’s exact test: P = 0.618
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gene expression analysis based on data from The Can-
cer Genome Atlas liver hepatocellular carcinoma project 
suggests the involvement of PPARD in the hepatic regu-
lation of DPYD expression [36]. In the present study, the 
common PPARD polymorphism rs2016520 was found to 
be a predictor of severe fluoropyrimidine-related toxicity, 
with patients with the TT genotype showing an increased 
risk of developing adverse events. Data from litera-
ture suggest that this genetic variant may affect PPARD 
functionality by interfering with Sp-1 binding, resulting 
in higher transcriptional activity of the C allele com-
pared with the T allele in  vitro [37]. Therefore, it could 
be hypothesized that altered PPARD activity associated 
with the rs2016520 variant could alter the regulation of 
DPYD expression and thus the catabolism of fluoropyri-
midines, ultimately affecting the risk of severe toxicity. 
Further larger studies are needed to confirm this sugges-
tive hypothesis and the clinical relevance of the PPARD 
rs2016520 polymorphism.

At the subpathway level, the present study suggested 
that the burden of common and rare variants in the 
“nuclear receptor” and “membrane transporter” gene 
classes may play a role in predicting severe fluoropy-
rimidine-related toxicity by SKAT analysis. The potential 
crucial role of the burden of rare variant in membrane 
transporter genes as predictive markers of therapy out-
come is confirmed by literature data. Rare damaging vari-
ants in the transporter OATP1B1 (SLCO1B1) have been 
shown to affect methotrexate clearance in children with 
acute lymphoblastic leukemia [4]. A recent study has 
reported that breast cancer patients with a high burden 
of rare variants in the transporter gene ABCC1 (MRP1) 
have shorter disease-specific survival than patients with 
a low variant burden after therapy with the MRP1 sub-
strates cyclophosphamide and doxorubicin [5]. These 
results confirm the potential predictive value of rare vari-
ants in membrane transporter genes and call for further 
research efforts on this topic.

Some limitations of the present study need to be 
considered. First, the study included patients treated 
mainly with fluoropyrimidines in combination with 
other chemotherapeutic agent (i.e., irinotecan, oxali-
platin). While particular attention was paid to exclude 
severe toxicities clearly not related to fluoropyrimi-
dines, possible interference cannot be excluded when 
recording toxicities not all attributable to fluoropyri-
midines Second, the in silico prediction tools for syn-
onymous variants as well as for variants falling into 
the untranslated or splice regions are still inadequate, 
which could have a negative impact on the assignment 
of deleteriousness of the same variants. Therefore, a 
more comprehensive functional analysis of the role of 
deleterious rare/novel variants in toxicity risk was not 

possible. Third, given the relatively small sample size 
of this work, confirmation of the results obtained in a 
larger population is needed, especially with regard to 
the predictive effect of common polymorphisms.

In conclusion, the present study demonstrated for the 
first time that the burden of rare variants in the DPYS 
gene detected by NGS can be a promising predictive 
marker for the risk of developing severe fluoropyrimi-
dine-related toxicity. This finding contributed to iden-
tify additional factors predisposing to the occurrence 
of severe toxicity of chemotherapy with fluoropyrimi-
dines besides DPYD variants and may improve treat-
ment personalization, especially in cancer patients 
with normal DPD activity. A predictive role of com-
mon DPYS and PPARD polymorphisms was also high-
lighted and requires future studies to confirm the data 
presented here. The present work demonstrated that 
the clinical predictive value of the burden of rare ger-
mline variants in candidate genes is still unexplored 
but has great potential to revolutionize the future of 
pharmacogenetics.
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