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Abstract 

Background  ALS is a heterogeneous disease in which different factors such as mitochondrial phenotypes act 
in combination with a genetic predisposition. This study addresses the question of whether homoplasmic (total 
mitochondrial genome of a sample is affected) and/or heteroplasmic mutations (wildtype and mutant mitochondrial 
DNA molecules coexist) might play a role in familial ALS. Blood was drawn from familial ALS patients with a possible 
maternal pattern of inheritance according to their pedigrees, which was compared to blood of ALS patients with-
out maternal association as well as age-matched controls. In two cohorts, we analyzed the mitochondrial genome 
from whole blood or isolated white blood cells and platelets using a resequencing microarray (Affymetrix MitoChip 
v2.0) that is able to detect homoplasmic and heteroplasmic mitochondrial DNA mutations and allows the assessment 
of low-level heteroplasmy.

Results  We identified an increase in homoplasmic ND5 mutations, a subunit of respiratory chain complex I, in whole 
blood of ALS patients that allowed maternal inheritance. This effect was more pronounced in patients with bulbar 
onset. Heteroplasmic mutations were significantly increased in different mitochondrial genes in platelets of patients 
with possible maternal inheritance. No increase of low-level heteroplasmy was found in maternal ALS patients.

Conclusion  Our results indicate a contribution of homoplasmic ND5 mutations to maternally associated ALS 
with bulbar onset. Therefore, it might be conceivable that specific maternally transmitted rather than randomly 
acquired mitochondrial DNA mutations might contribute to the disease process. This stands in contrast with observa-
tions from Alzheimer’s and Parkinson’s diseases showing an age-dependent accumulation of unspecific mutations 
in mitochondrial DNA.
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Background
Amyotrophic lateral sclerosis (ALS) is a progressive neu-
rodegenerative disease mainly affecting motoneurons. 
Different genetic causes have been identified ranging 
from disease causing monogenic mutations, risk loci 
that can act in an oligogenic manner as well as epigenetic 
alterations [1, 2]. A great variation in disease phenotype 
has been reported depending on the affected genes which 
vary broadly in their respective function. Additionally, a 
large heterogeneity of clinical symptoms is known even 
within the same affected genes [3]. Also, mitochondrial 
abnormalities have repeatedly been linked to ALS [4]. 
However, whether sequence-related alterations of the 
mitochondrial genome are a common trait in ALS has 
not been clarified to date.

The number of mitochondria per cell depends on the 
energy demand of the corresponding tissue. Due to their 
molecular function, neurons require a high amount of 
energy and are therefore rich in mitochondrial mass. 
Motoneurons, which are the most affected cell type in 
ALS, have been shown to be particularly susceptible to 
mitochondria-associated phenotypes [5]. One of the 
main causes for mitochondrial DNA (mtDNA) damage 
is reactive oxygen species (ROS) that originate during 
oxidative phosphorylation [6]. Due to its spatial proxim-
ity, mtDNA is particularly susceptible to ROS-induced 
damage and subsequent mutations. Moreover, mito-
chondria have a less efficient DNA repair mechanism 
to eliminate acquired damages [7]. Therefore, over time 
mtDNA alterations accumulate in long-lived cells such 
as motoneurons and platelets as fragments of long living 
megakaryocytes. These damages are thought to be more 
pronounced upon disease-associated mitochondrial mal-
functioning as it is the case in ALS [5, 8].

In contrast to the nuclear genome, mtDNA copy num-
bers vary per cell and tissue. Therefore, mtDNA altera-
tions, including point mutations and deletions, can occur 
to different extents. While homoplasmic mtDNA muta-
tions have been associated with neurological disorders, 
heteroplasmic mutations are known to be pathogenic if 
they exceed a threshold [9]. Furthermore, an accumula-
tion of low-level heteroplasmic mutations defined as a 
non-reference allele frequency of < 20% can have an influ-
ence on the clinical course of a disease [10].

To address the question of whether mtDNA mutations 
might play a role in familial ALS (fALS), mtDNA was iso-
lated from whole blood (WB), white blood cells (WBC) 
and platelets (PLT) from fALS patients and the mito-
chondrial genome was analyzed using a mtDNA rese-
quencing array (Affymetrix  MitoChip  v2.0) that allows 
detection of low-level heteroplasmy in addition to the 
conventional homoplasmic or heteroplasmic mutations. 
In general, maternal transmission serves as an indicator 

of mitochondrial involvement in the establishment of a 
disease. Therefore, we distinguished between fALS with 
a possible maternal inheritance pattern and fALS cases 
that do not point to a maternal inheritance pattern. As 
additional controls, we compared our results to healthy 
individuals without any known neurodegenerative back-
ground. With this, we are aiming to get a deeper insight 
into a possible role of mtDNA alterations acting as a dis-
ease modifier in a subgroup of ALS patients presenting 
with a maternal transmission of the disease.

Results
Mitochondrial content is unchanged in different blood cell 
populations of fALS patients and controls
To obtain a comprehensive picture of the impact of 
the mitochondrial genome on ALS, we set out to iden-
tify mitochondrial genome-related alterations in both, 
ALS cases with possible maternal inheritance as well 
as ALS patients without maternal association (Fig. 1a). 
All patients in each cohort, except for two samples, 
descend from different pedigrees and are therefore 
not genetically linked (see Additional file 1 for further 
information on individuals included in this study and 
Additional file 2 for representative pedigrees). Healthy 
controls were matched to patients regarding age and 
gender and are not genetically linked to the analyzed 
patients. To get an overview of mitochondrial muta-
tions, we employed a cohort of frozen EDTA blood 
(whole blood, WB) of fALS patients and age- and 
gender-matched healthy controls that have been col-
lected during the last decades (cohort 1). In cohort 
2, white blood cells (WBC) and platelets (PLT) were 
isolated from freshly drawn blood samples (Fig.  1b). 
Mitochondrial mass was determined and total mtDNA 
was isolated for MitoChip experiments from all sam-
ples (Fig. 1b). Mean age and gender of the two cohorts 
are illustrated in Fig. 1c. To exclude sequencing differ-
ences resulting from different haplogroup distributions 
among the analyzed cohorts, we used homoplasmic 
mutations identified in platelets or whole blood to 
determine the respective haplogroup of each indi-
vidual included in this study using mthap (https://​
dna.​james​lick.​com/​mthap/). As expected, haplogroup 
H was predominant and overall no significant hap-
logroup difference was found (Fig.  1d; Fisher’s exact 
test with simulated p = value, p = 0.1114). Although 
our analysis did not evidence any relationship of ALS 
(maternal or non-maternal) with specific haplogroups, 
we cannot rule out the possibility that, analyzing larger 
samples, an association between these pathologies and 
specific variants could be found. mtDNA copy number 
and citrate synthase (CS)  activity were measured to 
characterize the mitochondrial content in all different 

https://dna.jameslick.com/mthap/
https://dna.jameslick.com/mthap/
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sample types (Fig.  2). The mtDNA copy number is 
calculated based on the mitochondria encoded single 
copy sequence (D-loop) and relative to the nuclear 
encoded single copy gene (B2M). Both, mtDNA copy 
number (Fig.  2a–c) and CS activity (Fig.  2d–f ) were 

unchanged in all sample types, except for a slight 
increase (21%) in mtDNA copy number when compar-
ing whole blood from possible maternal versus non-
maternal ALS patients (p = 0.0359, Kruskal–Wallis test 
with Dunn’s correction).

Fig. 1  Study design and cohort characteristics. a ALS samples were distinguished based on pedigrees that allowed maternal or non-maternal 
inheritance and compared to controls. b Samples of cohort 1 consist of whole blood, whereas cohort 2 comprises freshly isolated platelets (PLT) 
and white blood cells (WBC). From each sample, mtDNA sequences and mitochondrial mass were examined using Affymetrix MitoChip v2.0 
or mtDNA copy number and the citrate synthase activity determination, respectively. (Created with BioRender.com) c Mean age and gender 
of the study cohorts are listed, including the number of individuals within each group. d Haplogroup analysis was performed for all maternally (mat) 
and non-maternally (non-mat) associated ALS patients and the control group using PLT or whole blood data (Fisher’s exact test with simulated 
p-value, p = 0.1114)
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Homoplasmic mutations in ND5 are enriched in whole 
blood samples of possible maternally inherited ALS 
patients with bulbar onset
Homoplasmy describes a uniform composition of the 
mitochondrial genome in a sample. Homoplasmic muta-
tions are thought to be inherited or occur early dur-
ing development indicating that they exhibit a strong 
genetic component. In an unbiased approach, homoplas-
mic mutations were identified based on MitoChip data. 
After analysis, the total amount of homoplasmic muta-
tions per subject did not differ significantly between 
ALS patients and controls or between ALS patients 
with a possible maternal versus non-maternal inherit-
ance (Fig.  3a–c). In contrast to this general analysis, all 

detected homoplasmic mutations were allocated to the 
appropriate gene from each individual to analyze the 
load of homoplasmic mutations per gene. Although it 
did not reach statistical significance, we found a strong 
association in higher numbers of point mutations in 
ND5, a subunit of NADH dehydrogenase (complex I 
of the respiratory chain), in maternally linked samples 
compared to non-maternally linked samples when ana-
lyzing the individual point mutations by gene in whole 
blood (Fig.  3d; Mann–Whitney test, p = 0.0706). These 
mutations were evenly distributed among the ND5 gene 
as depicted in Fig.  3h. When matching the amount of 
homoplasmic mutations in ND5 in each patient with the 
according site of onset, a significant increase in bulbar 

Fig. 2  Mitochondrial mass is unchanged between ALS and controls. a–c Mitochondrial mass was determined by mtDNA copy number comparing 
the D-loop sequence to the single copy gene B2M for whole blood a and white blood cells (WBC), b, respectively. c mtDNA copy number 
of denucleated platelets (PLT) is shown as Cq value. d–f As a second marker for mitochondrial mass the citrate synthase activity was determined 
in whole blood d, WBC e and PLT f and displayed as (μmol*µg)/min. (Data is illustrated as mean ± SD, Kruskal–Wallis test with Dunn’s correction, 
*p ≤ 0.05). CTRL Control, non-mat Non-maternal ALS, mat Maternal ALS

Fig. 3  Homoplasmic mutations in ND5 are enriched in whole blood samples of maternally associated ALS patients. a–c For all sample types 
analyzed, the homoplasmic mutations per subject were counted. d In whole blood homoplasmic mutations in ND5 per subject showed a strong 
association with a possible maternal inheritance of the disease when data were analyzed per gene and compared to non-maternal samples. 
(Graphs show data as mean ± SD, Mann–Whitney test p = 0.0706) e–g The number of homoplasmic mutations in ND5 per subject is shown 
for all ALS cases e, for maternally associated ALS cases f as well as for ALS cases that do not allow maternal inheritance g, comparing ALS 
patients with a bulbar onset versus patients with a spinal onset (mean ± SD, Mann–Whitney test, *p ≤ 0.05, **p ≤ 0.01). h Graphical presentation 
of homoplasmic mutations on the ND5 gene in possible maternal and non-maternal patients with spinal (blue) or bulbar (orange) onset. (Created 
with BioRender.com) i–k Correlation of the amount of ND5 mutations to ALSFRS decline per month, age at onset of the disease and disease 
duration of the respective patients (Pearson’s or Spearman’s correlation depending on normal distribution of the data)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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versus spinal onset can be observed (Fig.  3e–g; Mann–
Whitney test *p ≤ 0.05, **p ≤ 0.01). We also noticed an 
accumulation at positions 12,612 and 13,708 of mater-
nally associated patients with bulbar onset (Fig.  3h). 
A correlation to other clinical parameters, such as ALS 
Functional Rating Scale (ALSFRS) decline per month, age 
at onset and disease duration did not show any signifi-
cant effect (Fig. 3i–k, Pearson’s or Spearman’s correlation 
depending on normal distribution of the data).

Heteroplasmic mutations mainly affect platelets 
of maternally linked ALS patients
While in a homoplasmic state mutations appear in each 
mitochondrial genome, heteroplasmic mutations can 
be detected only in a fraction of the copies of mtDNA. 
With the GSEQ 4.1 software, heteroplasmy levels rang-
ing from 50% down to 20% can be detected. Again, in 
an unbiased approach, the number of heteroplasmic 
mutations per subject did not show any difference in 
the analyzed cell populations (Fig.  4a–c). Assigning 
the mutations to the respective gene, heteroplasmic 
mutations are in general significantly increased. In 
ND2 of whole blood samples (Fig. 4d), as well as in the 
D-loop region, COI and ATP8 in platelets (Fig.  4d–g; 

Kruskal–Wallis with Dunn’s correction for multiple 
comparison, *p ≤ 0.05, **p ≤ 0.01) of possible maternal 
versus non-maternally linked ALS patients, the num-
ber of heteroplasmic mutations is also increased. When 
comparing maternally associated ALS samples with 
healthy controls, heteroplasmic mutations were only 
increased in the D-loop region and ATP8. Therefore, 
the maternally linked enrichment of heteroplasmic 
mutations in ALS patient-derived platelets indicates a 
susceptibility to acquire mtDNA mutations.

Mutations are not associated to a specific nucleotide base 
in ALS patients
To address whether homoplasmic and heteroplasmic 
mutations follow a GC-AT bias, the percentage of each 
mutated nucleotide was calculated per subject. The 
comparisons among control, non-maternal and possi-
ble maternal subjects did not show any significant dif-
ference within each cell group (WB, PLT and WBC) 
suggesting that ALS patients and controls are not dif-
ferent in the bases subjected to mutation (Additional 
file 3; Chi–squared test).

Fig. 4  Platelets of maternally associated ALS patients show a higher heteroplasmic mtDNA mutation load. a–c The number of heteroplasmic 
mutations is shown per subject and d–g per significant gene for whole blood a, d, white blood cells b and platelets c, e, f, g. (Data are illustrated 
as mean ± SD, Kruskal–Wallis with Dunn’s correction for multiple comparison, *p ≤ 0.05, **p ≤ 0.01)
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No increase of low‑level heteroplasmy is observed 
in maternally associated ALS patients compared 
to non‑maternal or healthy controls
Low-level heteroplasmy with a mutation load of less 
than 20% is an indicator of unspecific acquired muta-
tions most likely induced by environmental factors such 
as ROS or by chance. To calculate low-level hetero-
plasmy, the contribution of the reference allele (Ratio of 
Expected Allele, REA) to every nucleotide position (np) 
is analyzed [11]. A high REA value indicates a low level of 
non-reference alleles, while a low value is suggestive of an 
increased presence of mutated alleles, in other words, of 
low-level heteroplasmy. The total number of significantly 
different np was calculated by comparing to the respec-
tive control group (Fig. 5). Especially in platelets, we saw 
a high number of significantly different REA values for 
maternally linked patients compared to control (405 np, 
Fig.  5a) or non-maternally linked (126 np, Fig.  5b) that 
are highlighted with red dots. Out of these, 65.3% and 
67.3% had higher REA values in patients with a possible 
maternal inheritance pattern, respectively, indicating that 
changes in low-level heteroplasmy are associated with 
PLT but also that maternally associated ALS is not char-
acterized by an increase of low-level heteroplasmy.

Overall, our data suggest that specific point mutations 
rather than unspecific or diffuse (low-level) heteroplasmy 
of the mitochondrial genome play a role in the disease 

course of ALS. Further, this study proposes that platelets 
are a vulnerable cell type regarding mtDNA stability in 
possible maternal ALS cases.

Discussion
Due to the heterogeneity of clinical phenotypes of ALS, 
environmental risk factors have been proposed to act in 
combination with a genetic predisposition in a multi-
factorial manner. Mitochondrial dysfunction has been 
described as such a disease modifier. Additionally, varia-
tions in the mitochondrial genome have been associated 
with ALS [12]. In the current study, we analyzed different 
peripheral blood subpopulations of fALS patients with 
possible maternal and non-maternal inheritance pat-
tern indicative of a potential mitochondrial contribution 
[13, 14].

We chose three different cell types to analyze the 
mitochondrial genome in peripheral blood. As a coarse 
overview, mtDNA was isolated from whole EDTA blood 
stored in the biobank. As an additional mtDNA source, 
white blood cells and platelets were separated from 
freshly drawn blood samples. White blood cells repre-
sent the major blood cell population and platelets were 
chosen because of their denucleated nature excluding a 
nuclear DNA background. Further, platelets derive from 
long-lived megakaryocytes mimicking a long life span 
similar to neurons.

Fig. 5  Platelets are susceptible to accumulation of low-level heteroplasmic mtDNA mutations. Graphical representation of the mitochondrial 
genome with gene annotations. Red dots indicate locations with significantly different (p ≤ 0.001, t test) REA values in platelets of maternally 
associated ALS patients compared to unaffected controls a or compared to ALS patients without a maternal association of the disease b. bp Base 
pair
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To address mitochondrial mass in these samples, we 
determined mtDNA copy number and citrate synthase 
activity. After comparing the results to healthy controls, 
we did not detect a significant difference in maternally 
linked ALS patients in either of these two parameters. 
This is in line with studies in neuronal tissues. In motor 
neurons derived from iPSCs and human post-mortem 
spinal cord tissue of C9ORF72 patients, the mtDNA 
copy number was unaltered [15]. On the contrary, an 
upregulated mtDNA copy number was detected in whole 
blood of ALS patients carrying ALS-causing mutations 
in SOD1 or C9ORF72 [16] as well as a downregulated 
mtDNA content in post-mortem spinal cord tissue of 
ALS patients [17]. These contradictory results reflect the 
known fact that the mitochondrial content of a cell var-
ies in different tissues and models. However, an unaltered 
mitochondrial mass as observed in our study might be 
indicative for independent effects of mtDNA mutations 
and mitochondrial mass in the analyzed samples.

Since the amount of mitochondrial genome var-
ies among different cell types, mutations of mtDNA 
can occur to different extents. If all mtDNA copies of a 
sample are affected, mutations are homoplasmic. This is 
most likely the case if an mtDNA mutation is transmitted 
indicating the strong hereditary trait of homoplasmy. In 
our cohort, we observed an enrichment of homoplasmic 
mutations in ND5 in whole blood of maternally associ-
ated ALS patients compared to samples from patients 
with a non-maternal inheritance pattern of the disease. 
ND5 is a subunit of complex I of the respiratory chain 
and a known mutational hotspot. Complex I is a major 
ROS producer that releases ROS into the matrix of mito-
chondria in close proximity to mitochondrial genome. 
Therefore, a vicious cycle of an already elevated ROS level 
observed in ALS [18] and a further increase of ROS levels 
due to a malfunction of complex I induced by homoplas-
mic ND5 mutations might be conceivable.

For both, maternally associated and non-maternal 
patients, ND5 mutations seem to be distributed evenly 
among the whole gene. Of note, accumulations at posi-
tions 12,612 and 13,708 of maternally associated patients 
with bulbar onset are noticeable. According to Phylotree, 
both positions are also markers for haplogroup J [19]. 
Consequently, we found an enrichment of haplogroup J 
in maternally associated individuals in our study. Hap-
logroup J has already been associated with cognitive 
decline in Alzheimer’s disease patients [20] and Leber’s 
hereditary optic neuropathy (LHON), a mitochondri-
ally transmitted disease mainly leading to a degeneration 
of retinal ganglion cells [21]. Additionally, it has been 
shown that haplogroup J can increase the penetrance of 
other mtDNA mutations [22] thereby further impairing 
mitochondrial associated damages that play a major role 

in neurodegeneration. However, a possible effect of hap-
logroup J is population specific indicating that additional 
(genetic) factors are needed for a clinical manifestation 
of the disease [21, 23]. This is in line with our data as we 
also suggest a multiple hit model as underlying mecha-
nism in maternally associated ALS patients in this study.

In this study, ALS patients with a known familial 
background of the disease were chosen. Therefore, the 
detection of mutations in mitochondrial ND5 indicate 
a co-existence with known ALS-causing genes as it has 
been shown for ND5/6 and Parkinson’s disease (PD)-
related mutations in PINK1 [24]. Piccoli et  al. observed 
a dose-dependent effect of mitochondrial mutations on 
onset and progression of the disease. This is in line with 
common knowledge that the effect of mtDNA mutations 
depends on a threshold meaning that up to a certain 
extent wildtype mtDNA can compensate for mutated 
alleles. Upon reaching a specific threshold, mtDNA 
mutations are prone to develop a detrimental phenotype 
[25]. In our cohort, homoplasmic ND5 mutations are 
enriched in whole blood samples of possible maternal 
ALS cases with a bulbar onset of the disease. This might 
indicate an additional detrimental effect of mitochondrial 
ND5 mutations as a bulbar onset of ALS is mostly associ-
ated with a fast progression, short survival and decreased 
quality of life [26]. However, a correlation to other clinical 
data including ALSFRS decline per month, age at onset 
and disease duration of ALS patients analyzed in this 
study did not show a relation to the amount of homo-
plasmic mutations. Here it needs to be noted that due to 
a lack of data availability, not all patients were included 
in the correlation. Therefore, higher sample numbers are 
needed to ensure that the occurrence of homoplasmic 
mtDNA mutations is solely associated to a bulbar onset 
and not dependent on other clinical parameters.

If mtDNA mutations occur to a lesser extent, wildtype 
and mutated copies coexist in the same cell and/or tis-
sue (heteroplasmy). Typically, heteroplasmic mutations 
are either inherited or acquired during the first stages 
of development and accumulate in post-mitotic tissue 
[27]. In different blood cell types of maternally linked 
ALS patients, we did not observe an overall significant 
increase in heteroplasmic mtDNA mutations. However, 
in platelets, a significant increase of heteroplasmic muta-
tions in D-loop, COI and ATP8 was detected compared 
to non-maternal control samples when grouping the 
mutations to the respective gene. Since the localization of 
heteroplasmic mutations seems to be randomly distrib-
uted among the whole mitochondrial genome, it seems 
most likely that these loci are susceptible to a higher 
mutation frequency [28]. In other neurodegenerative dis-
eases such as Alzheimer’s disease, an increase of overall 
heteroplasmic mutations has been observed [29, 30]. ALS 
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is associated with dysregulated metabolic activity and 
ROS levels [31, 32], resulting in a vicious circle of acquir-
ing mtDNA mutations and worsening of the mutational 
environment. Therefore, we speculate that the contribu-
tion of heteroplasmic mutations to neurodegenerative 
diseases is specific to each respective disease and unlikely 
to be a common underlying mechanism and that the 
already high mutational environment in ALS can second-
arily affect mtDNA by increasing heteroplasmic muta-
tions that randomly accumulate in mutational hotspots.

By detecting eight fluorescence values for each position 
of rCRS (including the sense and antisense strand), the 
MitoChip used in this study is able to detect even low-
level heteroplasmy affecting less than 20% of the analyzed 
mitochondrial genome. To assess mutations at these low 
levels, the ratio of expected allele frequency (REA) is cal-
culated by building the logarithmic ratio of signal inten-
sity of reference nucleotide at any position to average 
signal intensity of the 3 other nucleotides. Therefore, a 
high REA value stands for a high proportion of the refer-
ence allele at a certain position. In our maternally associ-
ated fALS cohort, we detected a significant difference of 
low-level heteroplasmy in some np from platelets com-
pared to each of the control groups. Interestingly, in two-
thirds of the detected nucleotide positions, REA values 
are higher for possible maternal ALS patients (65.3% and 
67.3% in comparison to healthy controls and non-mater-
nal fALS patients, respectively) indicating a non-relevant 
increase of low-level heteroplasmy in healthy controls 
and non-maternal fALS patients. mtDNA mutations 
occurring on such a low level are mainly acquired dur-
ing lifespan as a result of damage accumulation. Again, in 
Alzheimer’s and Parkinson’s disease an increase of non-
reference alleles has been observed indicating a contribu-
tion of diffuse and unspecific mtDNA alterations to the 
disease phenotype [33, 34]. This is contrary to our find-
ings in ALS indicating that low-level heteroplasmy of 
mtDNA is not associated with maternally linked ALS.

MitoChips have been extensively used to study 
mtDNA mutations associated with cancer, Alzhei-
mer’s disease, polymorphisms and rare mutations [11, 
35–37]. MitoChip sequencing has been well character-
ized in terms of sensitivity, specificity, and accuracy in 
detecting homoplasmic and heteroplasmic variants, 
and has been demonstrated to provide reproducible 
results, thus making a verification procedure unneces-
sary [38, 39]. Other methods are available to sequence 
the mitochondrial genome. Comparing MitoChip 
results to capillary electrophoresis sequencing showed 
a concordance between both methods of 99.999% [40]. 
In particular, next-generation sequencing (NGS) tech-
nology has proven to be a reliable technique providing a 

quantitative estimation of heteroplasmy level, although 
appropriate criteria for avoiding false positives are 
required. Both, MitoChip sequencing and NGS show 
comparable performances with regards to base call 
accuracy [41]. Analytical tools for arrays have been 
honed over several years and a general consensus has 
emerged on the most effective methods to process data, 
while as of now NGS data analysis poses a big challenge 
in terms of the huge quantity of data and the level of 
sophistication necessary to analyze them.

Taken together, we found an enrichment of homo-
plasmic mtDNA mutations in ND5, a subunit of com-
plex I of the respiratory chain in whole blood. Platelets 
seem to be a relevant blood cell population as they 
accumulate heteroplasmic mutations. It has been 
shown for other age-related neurodegenerative dis-
eases that a randomly distributed increase of mtDNA 
alterations can lead to a general instability of mtDNA 
which is most likely caused by an “aging” effect whose 
impact depends mainly on constitutive baseline mito-
chondrial function and exposure to environmental fac-
tors [33, 34, 42]. However, in this study, we see a rather 
directed mutational burden affecting mostly complex I 
of the respiratory chain, particularly the subunit ND5 
in possible maternal ALS cases with bulbar onset. 
Interestingly, an additional load of heteroplasmic muta-
tions is present in platelets that derive from long-lived 
megakaryocytes.

To our knowledge, this is the first study analyzing 
mitochondrial genome changes in fALS patients pre-
senting with a pedigree that also allows maternal inher-
itance. By showing that homoplasmic mutations are 
a common trait in maternally linked ALS, our results 
suggest that specific rather than diffusely distributed 
mtDNA mutations accumulate in ALS and might act as 
an additional disease modifier on top of a monogenic 
cause of the disease.

Conclusions
The data generated in this study indicate a contribution 
of mtDNA mutations to the course of disease of fALS 
patients that are associated with a maternal inherit-
ance pattern. Especially homoplasmic mutations in 
ND5, a subunit of complex I of the respiratory chain, 
are enriched in whole blood of possible maternal fALS 
patients with bulbar onset. Therefore, specific mtDNA 
mutations rather than diffusely distributed mutations 
that have been observed in Alzheimer’s and Parkinson’s 
disease suggest a direct genetic link of mtDNA muta-
tions detected in different blood cell populations to 
maternally associated fALS.
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Methods
Ethics statement
All experiments comprising human samples  were per-
formed in accordance with the declaration of Helsinki 
and approved by the Ethics Committee of Ulm Uni-
versity. All study participants gave informed written 
consent to participate in the study. ALS patients and 
healthy controls were recruited at the Universitäts- und 
Rehabilitationskliniken Ulm (RKU Ulm). Healthy con-
trols were chosen to match the patient cohort’s char-
acteristics. ALS patients were clarified as familial ALS 
patients due to a clear family history  of the disease. 
Blood was drawn from familial ALS patients whose 
pedigrees allowed maternal inheritance and compared 
to ALS patients without maternal association (non-
maternal) and age-matched controls (see Additional 
file  2 for representative pedigrees). Whole blood sam-
ples from the biobank included 27 patients carrying 
mutations in different ALS-causing genes (C9ORF72, 
SOD1, FUS or KIF5A) and 21 patients with a familial 
ALS history but without suspicious variants in known 
ALS genes. PLT and WBC were freshly isolated from 
6 patients with maternal association (2 with known 
ALS mutations (1 × C9ORF72, 1 × SOD1), and 4 with-
out any known mutation) and 16 patients without 
maternal association (6 with known ALS mutations 
(4 × C9ORF72, 2 × SOD1), and 10 without any known 
mutation). Further patient information is listed in 
Additional file 1.

Taken together, whole blood samples from 48 ALS 
patients (cohort 1) and platelet/white blood cell sam-
ples from 22 ALS patients  (cohort 2) were included in 
this study. It needs to be noted that 15 patients from 
cohort 1 were also included in cohort 2, but blood was 
drawn at different time points. Control samples did not 
overlap in both cohorts. Therefore, a total of 55 ALS 
patients and 71 controls were analyzed in this study.

Isolation of PLT and WBC
PLT and WBC were separated from 15 to 40 ml of fresh 
EDTA blood by several rounds of differential centrifu-
gation. Finally, magnetic bead depletion of CD45+ cells 
for PLT and depletion of CD61+ cells for WBC using 
MACS® Cell Separation (Miltenyi Biotec, Hilden, Ger-
many) cleaned up the populations, which were stored at 
− 80 °C for further experiments.

DNA isolation (nuclear and mtDNA)
Total DNA of PLT, WBC or WB samples was isolated 
using the QIAamp DNA Mini and Blood kit (Qiagen, 
Hilden, Germany).

mtDNA copy number
Genomic and mtDNA were isolated from frozen PLT 
or WBC pellets or from 500 µl EDTA blood using the 
QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Ger-
many). Levels of the nuclear encoded single copy gene 
beta-2 microglobulin (B2M) and of the mitochondrial 
displacement loop (D-loop) were determined in trip-
licates by qPCR. The mtDNA copy number for whole 
blood and white blood cells was calculated using the 
formula (2^(Ct nDNA-Ct mDNA)), whereas for PLT 
the Cq value is reported due to the lack of nuclear DNA 
[43].

Citrate synthase activity assay
Mitochondrial citrate synthase (CS) activity was deter-
mined in triplicates by detecting the absorbance of 
thionitrobenzoic acid (TNB) at a wave length of 412 nm. 
A porcine heart CS standard was used as reference in 
each experimental run. The CS activities are reported in 
(μmol*µg)/min [43].

MitoChip v2.0 Affymetrix
Analysis of mtDNA sequence variations was done using 
GeneChip™ Human Mitochondrial Resequencing Arrays 
2.0 (MitoChip v2.0) [44]. For processing of the arrays, 
the GeneChip® CustomSeq® Resquencing Array Proto-
col version 2.1 was used with the following modification: 
instead of using long-range PCR, mtDNA was ampli-
fied using the REPLI-g mitochondrial DNA kit (Qiagen 
Hilden, Germany), as it has been described for MitoChip 
experiments before [45], and purified using Agencourt® 
AMPure® XP magnetic beads (Qiagen Supplementary 
Protocol, REPLI-g mitochondrial DNA kit). After puri-
fication, 270  ng of mtDNA was fragmented and labeled 
using the GeneChip® Resequencing Assay Kit (Affyme-
trix, now part of ThermoFisher Scientific). After hybridi-
zation, MitoChip v2.0 arrays were washed and stained in 
a Fluidics Station 450 before being scanned in Affymetrix 
GeneChip Scanner 3000 7G. CEL files were acquired by 
GeneChip® Operating Software 1.4 (GCOS 1.4.0.036) 
and analyzed with GeneChip® Sequence Analysis Soft-
ware (GSEQ 4.1). Complete microarray data are available 
at Gene Expression Omnibus (GEO accession number: 
GSE211250).

MitoChip v2.0 data analysis
GSEQ 4.1 uses an objective statistical framework for 
the assignment of a base call to each nucleotide posi-
tion (np) complying with the quality score as defined 
in the resequencing algorithm. We set ‘‘model type’’ 
at diploid to enable the detection of heteroplasmy and 
‘‘quality score threshold’’ at 3 to provide the best base 
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calling accuracy and rate. The output files utilized for 
this study were the Single Nucleotide Polymorphism 
(SNP) View and Probe Intensity Files that provide, 
the base call and the values of fluorescence intensity 
of the four bases for each np for both sense and anti-
sense strands, respectively. SNP are classified as homo-
plasmic, heteroplasmic, or no-calls. The homoplasmic 
and heteroplasmic mutations are defined in compari-
son with the revised Cambridge Reference Sequence 
(rCRS) while a no-call is given when the quality score 
for the np investigated is below the threshold defined 
in the algorithm. The values of Probe Intensity Files 
were used to calculate REA (Ratio of Expected Allele) 
index, which is  defined as the log ratio of the signal 
intensity of the reference nucleotide, as indicated in 
the rCRS, to the average signal intensity of the other 
three alleles from the sense and antisense strand [11]. A 
high REA value indicates a prevalence of the reference 
nucleotide, whereas a low value suggests a significant 
contribution of the other three nucleotides. The num-
ber of homoplasmic and heteroplasmic mutations was 
counted in each subject or gene and averaged for each 
group. Analyses were performed by Kruskal–Wallis test 
with Dunn’s correction for multiple comparisons. REA 
values were calculated for the 16,544 np in every sub-
ject, and the np means were determined in each of the 
three patient groups. Before comparing mean values 
of each np, we applied the Shapiro–Wilk test to exam-
ine the distribution of the data and, depending on the 
result, we used Student’s t test (normal distribution) or 
Mann–Whitney test (not-normal distribution) compar-
ing the groups two-by-two. Significance level was set at 
p ≤ 0.001.

Base prevalence
Homoplasmic and heteroplasmic mutations were 
counted for each base (a, c, g or t), and the mean num-
ber per subject was calculated. Then, as the number of 
the four bases is different in the mtDNA sequence, we 
determined the percentage of mutations on the total 
number of each base. The comparisons among the 
groups (CTRL, maternal and non-maternal ALS) were 
performed with Chi-squared test.

Haplogroup analysis
Haplogroup analysis was performed on the basis of PLT 
or whole blood data from each subject using mthap 
(https://​dna.​james​lick.​com/​mthap/) [19]. For statisti-
cal analysis, Fisher’s exact test with simulated p-value 
was applied. Further information on haplogroup 

distribution in the analyzed cohort can be found in 
Additional file 1.

Statistical analysis
If not stated otherwise, statistical analysis was per-
formed using Graph Pad Prism 9. All data were tested 
for normal distribution by Kolmogorov Smirnov test. 
For comparison of two samples, Mann–Whitney test 
was chosen. Several groups were analyzed by Kruskal–
Wallis test with Dunn’s correction for multiple compar-
ison testing. Bar graphs show the mean values ± SD. For 
correlation of clinical data, Pearson correlation coeffi-
cients or nonparametric Spearman correlation depend-
ing on normal distribution of the data were applied.
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