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Abstract 

Background  Female breast cancer remains the second leading cause of cancer-related death in the USA. The hetero‑
geneity in the tumor morphology across the cohort and within patients can lead to unpredictable therapy resistance, 
metastasis, and clinical outcome. Hence, supplementing classic pathological markers with intrinsic tumor molecular 
markers can help identify novel molecular subtypes and the discovery of actionable biomarkers.

Methods  We conducted a large multi-institutional genomic analysis of paired normal and tumor samples 
from breast cancer patients to profile the complex genomic architecture of breast tumors. Long-term patient follow-
up, therapeutic regimens, and treatment response for this cohort are documented using the Breast Cancer Collabora‑
tive Registry. The majority of the patients in this study were at tumor stage 1 (51.4%) and stage 2 (36.3%) at the time 
of diagnosis. Whole-exome sequencing data from 554 patients were used for mutational profiling and identifying 
cancer drivers.

Results  We identified 54 tumors having at least 1000 mutations and 185 tumors with less than 100 mutations. Tumor 
mutational burden varied across the classified subtypes, and the top ten mutated genes include MUC4, MUC16, 
PIK3CA, TTN, TP53, NBPF10, NBPF1, CDC27, AHNAK2, and MUC2. Patients were classified based on seven biological 
and tumor-specific parameters, including grade, stage, hormone receptor status, histological subtype, Ki67 expres‑
sion, lymph node status, race, and mutational profiles compared across different subtypes. Mutual exclusion of muta‑
tions in PIK3CA and TP53 was pronounced across different tumor grades. Cancer drivers specific to each subtype 
include TP53, PIK3CA, CDC27, CDH1, STK39, CBFB, MAP3K1, and GATA3, and mutations associated with patient survival 
were identified in our cohort.

Conclusions  This extensive study has revealed tumor burden, driver genes, co-occurrence, mutual exclusivity, 
and survival effects of mutations on a US Midwestern breast cancer cohort, paving the way for developing personal‑
ized therapeutic strategies.
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Introduction
Female breast cancer is one of the most commonly diag-
nosed cancers globally, with an estimated 2.26 million 
in 2020, and the second most frequent cause of death 
related to cancer [1, 2]. Breast cancer is a heterogene-
ous disease with a high degree of variability in tumor 
morphology both across the cohort and within a patient 
resulting in unpredictable therapy resistance, metastasis, 
and clinical outcome [3–5]. Recent statistics indicate that 
despite remarkable advances in early diagnostic methods 
and clinical management of the disease, breast cancer still 
contributes to 7.2% of all cancer deaths [6]. Breast tumor 
stratification based on histological grade, size, lymph 
node status, stage, and hormone receptor status currently 
serves to provide prognostic predictors and guides clini-
cal decision making. In addition to these factors, integrat-
ing molecular-based classification using gene panels and 
whole genome or transcriptome sequencing technology 
can reveal previously unseen biological properties of the 
tumor, impacting clinical management [7–9]. This study 
attempts to characterize the molecular features of breast 
cancer in a predominantly rural midwestern population.

Several studies focused on the molecular profiles of 
breast tumors have demonstrated that intrinsic molecu-
lar characteristics of the tumor correlate with survival 
outcomes or treatment responses [10–12]. Investigating 
the complex genomic landscape of this heterogeneous 
tumor has also led to the identification of novel molecu-
lar subtypes and the discovery of actionable biomarkers 
[6, 13–15]. For example, a comprehensive global gene 
expression analysis identified a novel breast cancer sub-
type, ‘Claudin-low,’ characterized by low expression of 
Claudin genes and enrichment of cell adhesion proteins 
[16, 17]. The Claudin-low subtype was prevalent in tri-
ple-negative breast cancer, and this identification of a 
new subtype emphasizes the importance of supplement-
ing classic pathological markers with molecular mark-
ers. Along with gene expression profiles, comprehensive 
mutational profiling of breast tumors can identify driver 
genes specific to subtypes [18, 19]. In addition, these 
genomic characterizations have also led to the develop-
ment of widely used commercial multigene prognostic 
signatures like PAM50, MammaPrint, and OncotypeDX 
that predict chemotherapy sensitivities and metastasis 
risk. Even though these genomic assays provide a defini-
tive predictive advantage, they are limited to a subset of 
patients with intermediate prognosis risk based on their 
grade, Ki67 expression profile, or hormone receptor sta-
tus [20, 21]. In addition, triple-negative breast cancers 
with high heterogeneity in prognosis warrant better 
molecular prognostic signatures. Moreover, identifying 
actionable mutations in these aggressive breast cancer 
subtypes can aid in the development of tailored therapy 

for a better prognosis. Therefore, additional studies are 
warranted to  characterize the molecular profile of indi-
vidual breast tumors and integrate this information with 
clinicopathological features to improve current predic-
tion tools.

To better understand the complex genomic architec-
ture of breast tumors, we conducted a large multi-insti-
tutional genomic analysis of normal and tumor samples 
from breast cancer patients. The Fred and Pamela Buf-
fett Cancer Center (FPBCC) and its affiliated hospital 
network have been maintaining a unique resource, the 
Breast Cancer Collaborative Registry (BCCR) [22], which 
is a part of the integrated Cancer Repository for Cancer 
Research (iCaRe2, https://​icare2.​unmc.​edu). BCCR cata-
logs longitudinal data on BC patients that include sev-
eral clinicopathological parameters such as tumor stage, 
grade, hormone receptor status, and histological subtype, 
in addition to long-term patient follow-up, therapeu-
tic regimens, and treatment response. The uniqueness 
of our patient cohort includes well-documented clinical 
and treatment history of patients with germline-matched 
high-quality whole-exome sequencing data that can be 
analyzed on the basis of each clinicopathological param-
eter. In this study, we characterized the tumor mutational 
profiles of the BCCR cohort based on seven different cri-
teria and investigated potential clinical relevance asso-
ciated with their mutational profiles. This unique study 
uses well-annotated and curated breast cancer patient 
data from seven institutions in three US Midwestern 
states (Nebraska, North Dakota, and South Dakota) and 
integrates clinical and genomic information to character-
ize and identify potential therapeutic targets for precision 
medicine. Our study revealed significant findings, such as 
the prominent mutual exclusion of mutations in PIK3CA 
and TP53 across various tumor grades. Additionally, 
we identified specific cancer drivers for each subtype, 
including TP53, PIK3CA, CDC27, CDH1, STK39, CBFB, 
MAP3K1, and GATA3.

Results
Overview of the breast cancer cohort in this study
Clinicopathological features of the 554 breast cancer 
patients enrolled in this study are summarized in Table 1. 
The median age at diagnosis was 57.5  years, and the 
majority of the breast cancer patients in this study (90%) 
were Caucasians. Male breast cancer accounted for 2.2% 
of the patients. Three patients in our study group had 
bilateral tumors–tumor samples with the worst T stage 
were included for those patients. Most of the patients had 
ER or PR+/Her2-ve receptor expressions (66.1%); 15.3% 
had triple-negative subtypes. Patients with high Ki67-
high expression were prevalent (61%). After a median 
follow-up of 7.6 years, approximately 16% of our cohort 
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experienced relapse at some point, and 14% had distant 
metastasis. The most common sites of metastasis were 
visceral, bone and skin.

Mutation profiles of breast tumors
Mapping of sequencing reads to the reference genome 
showed an average coverage depth of above 100× for nor-
mal samples and above 200× for tumor samples in the 
targeted region. We identified 308,788 somatic mutations 
in our cohort using the standard mutation prediction 
pipeline, including missense, non-sense, splice-site muta-
tions, and translation start site mutations. We identified 
54 tumors having at least 1000 mutations and 185 tumors 
with less than 100 mutations in the coding region. The 
top ten mutated genes in this cohort include MUC4, 
MUC16, PIK3CA, TTN, TP53, NBPF10, NBPF1, CDC27, 
AHNAK2, and MUC2. Most of the identified mutations 
were missense (88%), whereas nonstop mutations and 
translation start site mutations were less than 0.2% in this 
cohort.

Patients recruited in this study were subdivided, 
and mutation profiles were compared across different 
groups based on demographic and clinical characteris-
tics. Patients were subdivided into different comparison 
groups based on tumor characteristics, including grade 
(Grade 1-3), stage (Stages 1, 2, 3 and 4) at the first breast 
cancer diagnosis, subtype (ER or PR+/Her2-ve, ER or 
PR+/Her2+ ve, ER- and PR-/Her2-ve, triple-negative), 
Ki67 staining grade (high, low), histology (invasive lobu-
lar carcinoma, invasive ductal carcinoma, others), pres-
ence (NPlus) or absence (N0) of lymph node involvement 
and race (Caucasian, African-American). The mutational 
profile of each comparison group will be described in 
detail in the following sections. In each comparison, we 
present the frequently mutated genes, the percentage of 
deleterious variants in these genes, Tumor Mutation Bur-
den (TMB), mutational signatures, APOBEC enrichment, 
co-occurring or mutually exclusive mutations, and muta-
tions associated with survival.

Comparison of mutation profiles across tumor grade
Gene-wise and sample-wise comparisons were made 
across the three grades. Top mutated genes and the del-
eterious mutations were different across the three tumor 
grades. PIK3CA, DSPP, KMT2C, and MAP3K1 were 
mutated in more than 20% of grade 1 tumors, whereas 
TP53, MUC12, and AHANK2 mutations were prevalent 
in grade 3 tumors (Fig. 1).

Even though the percentage of samples with PIK3CA 
and MAP3KI mutations were relatively small in grade 3, 
more than 60% of the mutations were deleterious. The 
percentage of samples with TP53 mutations was the 
highest in grade 3 tumors, whereas grade 1 tumors had 
the highest percentage of PIK3CA and CBFB mutations 
(Fig. 2).

Average TMB showed a gradual increase from grade 
1 to grade 3 tumors, though not significantly differ-
ent (Additional file  2: Fig. S1). Genes such as CDC27, 
DNHD1, and RBMX had no increase in the number of 
mutations from grade 1 to 3 but recorded a significant 
jump in the number of deleterious mutations. Using dif-
ferent statistical tools, we identified variants associated 
with the etiology of cancer having differential mutation 
prevalence across tumor grades with MUC20, TP53, 
and RUNX1T1 higher in grade 3 tumors, while PIK3CA 
and CBFB were higher in grade 1 tumors (Additional 
file 1: Table S1). We also noted that a higher percentage 
of patients in grade 3 had adverse outcomes than other 
stages when survival status was compared (Chisq P 
value = 0.01).

The study investigated specific subgroups for gene 
mutations and found that grade 1 tumors had many gene 
mutations that co-occurred. The top 20 gene sets with 

Table 1  Patient characteristics

Total number of patients 554

Median follow-up time 7.4 Years

Median age at diagnosis (range) 57.5 Years (22–85)

 ≥ 50 years = 402

 < 50 years = 152

Race/ethnicity White = 500, Black = 29
Hispanic (White or Other) = 14, 
Asian = 6
Multiracial/Other = 10, Unknown = 8

Ki67(%) Low (≤ 15%) = 104, High (≥ 15%) = 161

Tumor stage at Dx T = 292, T2 = 201, T3 = 41, T4 = 8, Tis = 8

Gender F = 542, M = 12

Molecular subtype TN = 74, ER/PR + ;HER2 +  = 69
ER/PR + ;HER2- = 362, ER/PR-
;HER2 +  = 21
ER/PR + , unknown Her2 status = 4

Nodal status N0 = 320, N +  = 230

Vital status Alive = 394, Deceased = 116
Unknown/Lost to follow up = 44

Subtype by FISH or IHC Her2 Type = 12, Luminal = 196
Luminal A = 161, Luminal B = 127
Triple negative = 85

Paired samples (Normal) Yes = 554

BRCA1-mutation Yes = 8, no = 546

BRCA2-mutation Yes = 12, no = 542

Tumor histology Invasive ductal adenocarcinoma = 473
invasive lobular carcinoma = 52
mixed carcinoma = 5, Other = 2

Menopausal status Yes = 244, no = 36

Therapy Any chemotherapy = 390
Neoadjuvant chemotherapy = 75

First site of distant metastasis Visceral = 14, bone = 15, brain/CNS = 2
Skin, other = 5, multiple = 24



Page 4 of 17Vellichirammal et al. Human Genomics           (2023) 17:64 

co-occurring or mutually exclusive mutations (ZF1). 
Some gene mutations, such as MUC16-QRICH2 and 
RNF213-TTN, co-occurred frequently, while CDC27-
NBPF10 mutations were mutually exclusive (Additional 
file  1: Table  S2). A small percentage of grade 1 tumors 
had an APOBEC-enriched mutagenesis signature, but 
the mutational load was not significantly different from 
non-APOBEC-enriched samples. De novo mutational 
signatures identified in grade 1 tumors included COS-
MIC signatures 1, 5, 29, and 38 (ZF2). The study used 
MutSigCV to identify genes with significantly higher 

mutation rates in grade 1 tumors. PIK3CA, CBFB, 
CDC27, MAP3K1, and ESRRA​ were among the genes 
that were cancer drivers (Additional file  1: Table  S3). 
Patients with PIK3CA or CBFB mutations had lower 
survival rates than those without mutations (Additional 
file 2: Fig. S2A, ZT1).

In grade 2 tumors, there were many co-occurring 
mutations, including MUC5B-OBSCN, MUC5B-DNAH9, 
RNF213-DCHS2, RNF213-AHNAK2, and MUC5B-
HERC2 (ZF1, Additional file  1: Table  S4). TP53-CDH1, 
DSPP-CDH1, NBF10-MUC5B, NBF10-MUC16 had 
mutually exclusive mutations. Grade 2 tumors had a 
higher percentage of genes with mutational co-occur-
rence compared to grade 1 tumors. MutSigCV analysis 
identified TP53, MUC2, PIK3CA, CDH1, CDC27, and 
ERBB2, as cancer drivers in grade 2 tumors (Additional 
file  1: Table  S5). We identified 4 COSMIC mutational 
signatures (SBS29, SBS5, SBS38, and SBS2 in grade 2 
samples (ZF3). HERC2, MUC5B, PKD1, and AHNAK2 
mutations were associated with poor survival in patients 
with grade 2 tumors (Additional file 2: Fig. S2B, ZT2).

In grade 3 tumors, mutations in TP53 co-occurred 
with RBMX1, OBSCN, DSPP, NBPF1, and TTN muta-
tions (ZF1). MUC16 mutations also co-occurred with 
RBMX, CDC27, and AHNAK2. MutSigCV analysis identi-
fied TP53, CDC27, PIK3CA, CDH1, STK39, and FOXO3 
as possible cancer drivers in grade 3 tumors (Additional 
file 1: Table S6). Patients with TP53 mutations had poorer 
survival rates compared to wild type TP53 (Additional 
file 2: Fig. S2C). Though the samples sizes were extremely 

Fig. 1  Distribution of patient cohort across the three grades. The upper panel of the figure provides the distribution of tumor mutation burden 
for each patient assigned to a particular grade. Patient characteristics, including vital status, family history, subtype status, and age, are also included 
for each group. The bottom panel represents the top mutated genes across the three groups. The percentage of deleterious variants in each gene 
is also represented, along with the type of mutation detected

Fig. 2  Distribution of differentially mutated genes across grades. 
The distribution of mutations TP53, PIK3CA, and CBFB, are shown 
in the graph. Fisher’s test P-value is provided for statistically significant 
comparisons
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small, mutations in TP53, NBPF1, RBMX, MACF1, and 
CRIPAK were associated with an increased risk of relapse 
(ZT3). CRIPAK and NBPF1 mutations conferred higher 
metastasis risk in grade 3 tumors (ZT3).

APOBEC signature was enriched in 17 grade 3 tumors 
(9%), similar to grade 2 tumors. Four COSMIC muta-
tional signatures were identified in grade 3 tumors; 
SBS29, SBS13, SBS26, and SBS38 (ZF4).

Comparison of mutation profiles across tumor subtypes
Our patient cohort was categorized into four subtypes 
based on hormone receptor status. The ER/PR + veHER2-
ve subtype was the largest (70%). The triple-negative sub-
type had significantly higher TMB when compared to all 
other subtypes, and ER/PR + veHER2-ve had the lowest 
(Additional file 2: Fig. S3). PIK3CA mutations were more 
frequent in ER/PR + veHER2-ve subgroup, and MUC16, 
MUC5B, QRICH2, and SVEP1 mutations were frequent 
in ER/PR + veHER2 + ve subgroup (Fig.  3A, Additional 
file 2: Fig. S4).

More than 48% of the mutations in PRAMEF2 
were deleterious in this subtype. MUC4, NBPF1, and 
CSMD3 gene mutations were recurrent in the ER/PR-ve 
HER2 + ve patients. More than 60% of the mutations 
identified in PIK3CA, TTN, and ZNF717 in this subtype 
were deleterious. ER/PR-veHER2 + ve patients had recur-
rent mutations in MUC4, NBPF1, and CSMD3, and tri-
ple-negative patients had more mutations in TTN, FLG, 
SYNE1, LRP1B, and PRKDC, as well as deleterious muta-
tions in XIRP2, SVEP1, OR4A16, DST, CSMD3, and FLG.

Cancer-associated variants differentially mutated 
across subtypes were identified. Most of these muta-
tions were identified in HLA-A, HLA-DRB1, KMT2C, 
MUC4, NEFH, PIK3CA, and ZNF814 (Fisher’s exact 
test AdjP = value < 0.05) (Additional file  1: Table  S7). 
In contrast, TP53 mutations were prevalent in the 
ERPR + veHER2-ve subtype.

Several genes reported to be significant in breast can-
cer had enrichment of mutations in the triple-negative 
subtype. TP53, CDC27, CTBP2, and PTEN had recurrent 

mutations compared to their baseline rates (Addi-
tional file 1: Table S7). TP53, PIK3CA, CRIPAK, CDC27, 
LZTR1, MUC16, and CBFB are among the significantly 
mutated genes that could be classified as driver genes 
in the ER/PR-ve HER2 + ve subtype. A large number of 
genes (n = 155) were identified as driver genes in the ER/
PR + veHER2-ve subtype compared to others. These sig-
nificantly mutated genes contained breast cancer-asso-
ciated genes, including TP53, PIK3CA, CDC27, ESX1, 
and ESRRA​. Relatively fewer genes were identified as sig-
nificantly mutated in ERPR + ve Her2 + ve and ER/PR-ve 
HER2 + ve subtypes (Additional file  1: Table  S7). TP53, 
LZTR, and CRIPAK were identified as drivers in both 
ER/PR + ve Her2 + ve and ERPR-ve HER2 + ve subtypes. 
TP53 was identified as a cancer driver in all subtypes.

Survival was negatively associated with mutations in 
NBPF1 and positively associated with MUC2 in triple-
negative tumors (ZT4). In the ERPR + veHER2-ve sub-
group, mutations in TP53, GATA3, GPR98, MUC5B, 
NEB, and AHNAK2 were associated with shorter survival 
time, while mutations in GATA3 were associated with 
longer survival. Additionally, mutations in DSPP and 
GPR98 were found to increase the risk of metastasis in 
the ER/PR + ve HER2-ve subgroup.

Mutations co-occurred frequently in ER/PR + HER2-, 
while mutually exclusive mutations were rare (ZF5). 
NBPF10 was mutually exclusive with DNAH9, MUC5B, 
CDC27, and TTN, and TP53 mutations were mutually 
exclusive with GATA3 and CHD1. Mutations in PIK3CA 
were mutually exclusive with CRIPAK mutations. In ER/
PR + HER2+, co-mutations were linked to MUC genes, 
TNXB, and DNAH17, and mutations in TP53 or PIK3CA 
were not found to co-occur (ZF5). ER/PR- HER2 + had 
few co-occurring mutations, and TP53 mutations were 
mutually exclusive with FOXQ1 and CDC27. No muta-
tions were mutually exclusive in triple-negative subtype, 
but MUC genes, AHNAK2, CROCC, and DNAH17 fre-
quently co-occurred (ZF5).

ER/PR + veHER2 + ve and ER/PR-veHER2 + ve sub-
types had higher percentages of samples with APOBEC 

Fig. 3  Distribution of mutations across PIK3CA, TP53, and GATA3 genes. The number and type of mutations in the different protein domains are 
represented in the figure
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signature (10.3% and 9%) compared to the rest of the sub-
types. Each breast cancer subtype showed distinct muta-
tional signatures. ER/PR-ve HER2 + ve subtype had SBS1 
and SBS40, ER/PR + ve HER2-ve had four mutational 
signatures, including SBS13 (ZF6, 7), and triple-negative 
had four mutational signatures, with SBS40 unique to 
this subtype and SBS38 shared with ER/PR + ve HER2-ve 
(ZF8, 9).

Comparison of mutation profiles across histological 
subtypes
Patients were divided into Invasive lobular carcinoma 
(ILC), Invasive ductal carcinoma (IDC), and Other histo-
logical types, with IDC being the most common (80%). 
Deleterious mutations were more prevalent in IDC, with 
higher frequencies observed in PIK3CA, TTN, SVEP1, 
FAT1, ABCA13, and OBSCN (Additional file 2: Fig. S5). 
Mutations in MUC16, TP53, TTN, and AHNAK2 were 

more common in IDC, while CDC27, PKHD1L1, and 
MUC21 had higher frequencies in ILC. ILC had more fre-
quent mutations in PIK3CA, CDH1, QRICH2, ABCA13, 
MUC12, and NEB compared to the other subtypes.

TMB was higher in IDC than others, though the 
difference was not statistically significant (T-test P 
value ≤ 0.05) (Additional file 2: Fig. S6). Among the can-
cer-associated variants identified in the three subtypes, 
CDH1, PTCH1, and TP53 mutation frequencies were 
significantly different (Fisher’s test FDR corrected P 
value < 0.05) (Fig. 4A).

TP53 mutations were frequent in the IDC subtype, 
whereas mutations in CDH1 and PTCH1 were relatively 
fewer in this subtype. MutSigCV identified a signifi-
cant number of cancer driver genes in IDC compared to 
other subtypes. These included PIK3CA, TP53, CDC27, 
GATA3, CBFB, ESX1, MAP3K1, and ESRRA​ (Addi-
tional file 1: Tables S8–10). All of the oncogenic drivers 

Fig. 4  Distribution of mutations and representations of mutational interactions across histological subgroups. A Distribution of CHD1, PTCH1, 
and TP53 mutations across the histological subtypes. B, C, D Mutational interactions identified across mutations in IDC, ILC, and Other. Green 
squares within the matrix indicate Co-occurrence, and the brown squares indicate mutual exclusivity across genes. The color scheme indicates 
the strength of the association, with darker colors indicating stronger co-occurrence or mutual exclusivity between the genes
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identified in ILC were shared across all subtypes. SF3B1 
was identified as an oncogenic driver exclusive to the 
‘other’ subtype. In all subtypes, four genes—PIK3CA, 
RHPN2, CRIPAK, and CDH1, were identified as cancer 
drivers (ZF10).

We identified 29 (6.8%) APOBEC-enriched samples 
among the IDC subtype. Several co-occurring mutations 
were identified in IDC, including MUC17, MAP3K1, 
MUC6, HERC2, MUC5B, MUC16, CDC27, and KMT2C 
(Fig.  3B). PIK3CA and TP53 mutations along with 
NBF10-CDC27 and NBF10-TTN mutations were mutu-
ally exclusive in IDC. We identified six samples in 
ILC (12%) that were APOBEC-enriched. Mutations in 
MUC16, TTN, and RNF213 were found to be co-occur-
ring with other mutations in ILC. Several co-occurring 
mutations were identified in the other subtype, including 
TP53, MUC2, RNF213, DNAH7, and AHNAK2 (Fig. 3C, 
D). Mutations in CDC27 and MUC4 were mutually 
exclusive in the other subtype.

All mutational signatures identified in ILC and Other 
subtypes were shared between the two groups, whereas 
SBS2 and SBS29 were identified across all the three 
groups. Mutational signature linked to SBS38 and SBS13 
was exclusively identified in IDC.

Mutations in TP53, HERC2, and SYNE1 were associ-
ated with poor survival in the IDC subgroup (ZT5). We 
found mutations in NCOR4 alone to confer a higher risk 
of poor survival in the ILC subgroup. Mutations in NBPF 
genes and MUC4 were significantly associated with lower 
survival in the Other subtype. Several mutations in the 
IDC group were linked to relapse and metastasis events 
(ZT5). NBPF genes, HERC2 and MUC12, were associated 
with relapse. Patients that developed distant metastasis 
had significantly higher mutations in DNAH14, MUC4, 
and NBPF1. TP53 mutations were associated with both 
relapse and metastasis in IDC.

Comparison of mutation profiles across tumor stages
The tumor samples were grouped into three stages based 
on the TNM staging system: stage 1, stage 2, and stage 
3 and stage 4. The majority of patients in the cohort 
belonged to stages 1 and 2, with over 200 patients in each 
group, while 90 patients belonged to stage 3 and stage 
4 at their initial breast cancer diagnosis. Several high-
frequency mutations identified in stage 1 were deleteri-
ous, including MUC genes, AHNAK2, MACF1, SVEP1, 
DNAH14, and SPEN (Additional file 2: Fig. S7). Deleteri-
ous mutations in OBSCN, MUC5B, MUC4, TP53, HRNR, 
and PARP4 were higher in stage 3 and stage 4.

MutSigCV identified a large number of cancer driv-
ers in all stages. Several genes were identified as cancer 
drivers in tumor stages 1 and 2. PIK3CA, TP53, CDC27, 
CDH1, and CRIPAK genes were identified as drivers 

in all three stages (Additional file  1: Table  S11). Stage 
1 and stage 2 shared a number of driver genes, includ-
ing CBFB, GATA3, CTBP2, STK39, OVGP1, NBPF1, and 
PABPC1 (ZF11). Mutational interactions varied across all 
three stages. In stage 1 tumors, NBPF10 mutations were 
mutually exclusive with MUC17, MUC5B, and CDC27. 
In stage 2 tumors, PIK3CA and TP53 mutations were 
mutually exclusive, along with NBPF10-TTN mutations. 
Though NBPF10 was mutually exclusive with several 
other mutations across different stages, in patients with 
stage 3 and 4, these mutations were mutually exclusive 
with mutations in SPEN. Several mutations coexisted 
with TP53 mutations in stages 1 and 2, but not in stage 3 
and 4. PIK3CA mutations coexisted with other mutations 
exclusively in stage 1.

Mutational signature analysis revealed both common 
and unique signatures across different stages. The sig-
nature associated with ’exposure to tobacco (chewing) 
mutagens’ (SBS29), SBS5 (unknown etiology), and SBS38 
(potential indirect damage from UV light) was identified 
in all three stages (ZF12). Signatures linked to SBS13 and 
SBS6 were identified exclusively in stage 2 (ZF12).

Patients with stage 1 tumors harboring MAP3K1 muta-
tions had a poor prognosis than wild type (P = 0.0013 
HR = 2.67), whereas PABPC1 and NEFH mutations pro-
vided a slight survival advantage (Additional file  2: Fig. 
S8). In stage 2 tumors, mutations in PRUNE2 and TP53 
resulted in poor survival ((ZT6, Additional file  2: Fig. 
S9). MUC2 mutations were associated with a favorable 
impact on survival (P value: 0.03; HR: 0.371) in this sub-
group (Additional file 2: Fig. S9). In stage 3 and 4 tumors, 
NBPF1 and TP53 mutations resulted in poor survival 
(P value: 0.0045; HR: 2.56) (Additional file  2: Fig. S10). 
Mutations in AHNAK2, NBOF10, and NBPF1 were asso-
ciated with a higher risk of metastasis in stage 1. PABPC3 
and LAMA5 mutations were associated with higher 
metastasis in stage 2. DNAH14, CRIPAK, TP53, DNAH2, 
TTN, OBSCN, GPR98, NBPF1, and DSPP mutants were 
associated with a higher risk of metastasis in stage 3. 
Similarly, CRIPAK and MUC5B were associated with a 
higher risk of relapse in stage 3.

Comparison of mutation profiles across Ki67 levels
The study divided breast cancer tumors into Ki67-high 
and low groups based on expression levels and found that 
Ki67-high tumors had a higher percentage of mutations 
in TP53, TTN, HRNR, MUC16, and AHNAK2 (Addi-
tional file 2: Fig. S11). The Ki67-low group had the highest 
percentage of mutations in PIK3CA and a lower percent-
age of TP53 mutations. Average TMB and deleterious 
mutations were higher in the Ki67-high group than the 
Ki67-low group, except for TP53 mutations (Additional 
file  2: Fig. S12). TP53 (Fishers Adj P value < 0.000) was 



Page 8 of 17Vellichirammal et al. Human Genomics           (2023) 17:64 

differentially mutated in Ki67 immunoreactivity groups, 
with higher mutations noted in patients with Ki67 
high expression. MutSigCV analysis identified CDC27, 
PIK3CA, GATA3, CDH1, CTBP2, and CRIPAK as com-
mon cancer driver genes across both Ki67 expression 
groups (Additional file  1: Table  S12, ZF13). In addition 
to these shared genes, several unique drivers were iden-
tified in each group-CBFB, MAP3K1, RHPN2 MUC16, 
and TBX3 in Ki67-low, and TP53, RBMX, PABPC1, and 
MTCH2 in Ki67-high.

Several mutations were identified in the Ki67-high 
expression group that co-occurred. These co-mutated 
genes included TTN, MUC genes, CDC27, DNHD1, and 
CSPG4 (ZF14). To note, the cancer-associated mutations 
in TP53 co-occurred with MUC4 mutations in this group. 
In contrast, NBPF8 mutations were mutually exclusive 
with MUC4 and NBPF10 in the Ki67- high expression 
group. Relatively few mutations were co-occurring in 
the Ki67-low expression group, including TTN, DNAH9, 
MUC16, MUC6, PIK3CA, KMT2C, and NBPF (ZF14). 
Mutations in PIK3CA co-occurred with KMT2C muta-
tions, whereas NBPF10 and TTN mutations were mutu-
ally exclusive.

Common mutational signatures across all groups were 
identified as SBS29 (exposure to tobacco (chewing) muta-
gens) and SB5 (unknown etiology) (ZF15). However, 
Ki67-high expression tumors had exclusive mutational 
signatures of SBS13 (APOBEC Cytidine Deaminase 
(C > G) and SBS3 (defects in DNA-DSB repair by HR) 
(ZF15). On the other hand, Ki67- low expression group 
had exclusive mutational signatures associated with SBS6 
(defective DNA mismatch repair) and SBS2 (APOBEC 
Cytidine Deaminase (C > T)) (ZF15).

Mutations in NBPF1 were correlated negatively with 
survival in our cohort having Ki67-high expression. 
Metastasis risk increased with mutations in MUC6, 
whereas mutations in AHNAK2 were protective (ZT7).

Comparison of mutation profiles across tumors 
with different lymph node status
The study grouped tumors into two categories based on 
nodal involvement at diagnosis: NPlus (presence of nodal 
involvement) and N0 (absence of nodal involvement). 
About 58% of tumors were in the N0 category. Tumors 
in the N0 category had a marginally higher percentage 
of deleterious variants compared to NPlus tumors. TP53 
mutations were more frequent in the NPlus group, which 
had a higher percentage of samples with mutations in this 
cohort (Additional file 2: Fig. S13).

MutSigCV analysis identified TP53, PIK3CA, CDC27, 
PARP4, and MAP3K1, as cancer drivers in both nodal 
involvement categories (Additional file  1: Table  S13). 
Additionally, unique driver genes were identified in 

both N0 and NPlus groups. Mutations were found to be 
co-occurring more frequently in NPlus tumors than in 
tumors with no nodal status (Fig. 5A).

In the N0 category, mutually exclusive mutations were 
found in TP53 and NBPF10, while in both categories, 
TP53 and PIK3CA mutations were mutually exclusive. 
Mutations in genes belonging to 10 signaling pathways 
were compared, and the Nplus group had mutations in all 
genes in the TGF-β, TP53, and NRF2 pathways (Fig. 5B). 
A higher percentage of mutations in TP53 pathway genes 
was found in the Nplus group compared to N0 (t-test P 
value = 0.008). TMB was marginally higher in tumors 
with nodal involvement (t-test P value 0.01, Fig. 5C).

Analysis of mutational signatures revealed shared sig-
natures for SBS29 and SBS6 in both N0 and NPlus cat-
egories (ZF16), along with several unique signatures.

Patients with KMT2C mutations in lymph node-nega-
tive tumors and TP53 mutations in lymph node-positive 
tumors had lower survival than those with wild-type 
tumors (Additional file 2: Fig. S14, ZT8). DNHD1 muta-
tions were associated with a slight survival advantage for 
lymph node-positive tumors. Mutations in CRIPAK and 
MUC12 were associated with a lower risk of relapse in 
lymph node-negative tumors (ZT3), and CRIPAK muta-
tions were also protective against metastasis in both N0 
and NPlus groups. However, TP53 mutations were asso-
ciated with the risk of metastasis in lymph node-positive 
tumors (ZT3).

Comparison of mutation profiles in Caucasian 
versus African Americans
More than 94% of our patient cohort was Caucasian.

MutSigCV analysis identified shared and unique can-
cer driver genes among different races (Additional file 1: 
Table  S14). The analysis identified three genes (TP53, 
CDC27, and CDH1) as cancer drivers in African Ameri-
cans, while 194 genes were identified in Caucasians. 
TP53 and CDC27 had a higher mutation frequency in 
African Americans compared to Caucasians (Fig. 6A).

Several drivers identified among TCGA cancer cohorts 
were also identified in both ethnicities. TP53 and KMT2C 
genes were identified as drivers in both groups. KMT2D 
and GATA3 were uniquely identified in African Ameri-
cans as cancer drivers reported in TCGA data (Fig. 6B), 
whereas PIK3CA, MAP3K1, CDH1, and MUC6 were 
identified in Caucasians (Fig. 6C).

APOBEC-enriched samples were highest among Cau-
casians (8.8%), and no APOBEC enrichment was noted 
among African Americans. Mutational signatures associ-
ated with SBS5 and SBS29 were identified in both groups 
along with several unique signatures (Figs. 5E, 6D).

Caucasians had an abundance of co-occurring 
mutations compared to African Americans (ZF17). 
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Mutations involving MUC16, MUC6, MUC2, MUC12, 
MAP3K1, KMT2C, CDC27, and AHNAK2 co-occurred 
in Caucasians (ZF10). Mutually exclusive mutations 
among TP53, CDH1, PIK3CA, and NBPF10 were fre-
quent in Caucasians. In African Americans, very few 
co-occurring mutations were identified, along with 
one mutually exclusive mutation between TP53 and 
GATA3 (ZF17).

Survival analysis identified mutations in NBPF1, 
AHNAK2, NBPF10 associated with lower survival in 
African Americans. On the other hand, MUC5B, and 
MAP3K1 showed a significant negative association 
with overall survival (ZT9). TP53 mutations confer 
a higher risk of relapse and metastasis in Caucasians 
(ZT9).

Discussion
This study analyzed the somatic mutational profile of 554 
breast cancer patients and is characterized by integrat-
ing genomic variants along with long clinical follow-up. 
This cohort represents the population structure of the 
US Midwest, with a higher representation of Caucasians 
than any other racial or ethnic community. About 31% of 
the patients had at least one first- or second-degree rela-
tive diagnosed with breast or ovarian cancer, suggesting 
a strong familial risk factor in the etiology of this cancer.

MUC4(68%), MUC16(45%), PIK3CA(36%), TTN(31%), 
TP53(30%), NBPF10(30%), NBPF1(29%), CDC27(26%), 
AHNAK2(24%), and MUC2(22%) were the top mutated 
genes in our breast cancer cohort. Of these genes, muta-
tions in PIK3CA, TTN, TP53, and MUC16 were also 

Fig. 5  Distribution of mutational interactions across lymph node status. A Mutational interactions among Lymph node-positive (NPlus) and lymph 
node-negative (N0) tumors are represented here. Green squares within the matrix indicate Co-occurrence, and the brown squares indicate mutual 
exclusivity across genes. The color scheme indicates the strength of the association, with darker colors indicating stronger co-occurrence or mutual 
exclusivity between the genes. B Mutations identified candidate genes across oncogenic pathways in lymph node plus tumors are represented 
here. The percentage of mutated genes and samples mutated in each pathway are also represented. Asterisk indicates Fisher’s test P values 
for samples with TP53 mutations in N0 and NPlus groups. C Tumor Mutation Burden across lymph node-negative and lymph node-positive tumors
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highly represented in the TCGA breast cancer database 
(TCGA PanCancer Atlas data, cBioPortal). TMB var-
ied across several subgroups in our cohort. For example, 
the triple-negative subtype had significantly higher TMB 
than other subtypes. On the other hand, TMB status was 
higher in grade 3 tumors, Ki67-high tumors, IDC sub-
type, and among African Americans, though not statis-
tically different. However, several subgroups mentioned 
above have a higher percentage of deleterious mutations 
in cancer-associated genes, which could be functionally 
relevant in late-stage or aggressive cancers. Higher TMB 
has been associated with a better prognosis with immune 
checkpoint inhibitors and is now investigated as a predic-
tive biomarker [23, 24]. TMB high breast tumors have 
also been associated with unique mutational profiles and 
enriched with actionable mutations, which provides new 
opportunities for innovative therapeutic approaches [25].

Mutual exclusion of mutations in PIK3CA and TP53 
was very pronounced when patients were classified 
across grades. PIK3CA mutations were prevalent in 
grade 1 tumors, whereas TP53 mutations were higher 
in grade 3 tumors. Both PIK3CA and TP53 mutations 
showed opposite trends across grades (Fig. 2). Biological 
processes that are similar in nature can exhibit mutual 
redundancy, and a single alteration is adequate to dis-
rupt the function of the process. Identifying instances 
of mutations that are mutually exclusive can help iden-
tify unknown functional, synthetic lethal interactions. 

In contrast, mutations that co-occur can be synergetic 
leading to malignancy and treatment response [26]. Sig-
nificant associations of PIK3CA mutations to lower grade 
and smaller size of breast tumors were also reported in 
a meta-analysis containing 19 individual studies [27]. 
About 36% of the patients had PIK3CA mutations; the 
distribution of PIK3CA mutations across all subsets is 
represented in Fig. 3A.

PIK3CA mutation frequency was also significantly 
different across subtypes based on ER/PR status. 
ERPR + veHER2-ve patients had the highest percent-
age of PIK3CA mutations, and ERPR-veHER2 + ve had 
the lowest. Earlier studies have identified the prognostic 
potential of PIK3CA mutations, often associated with 
better clinical response [27–29]. In addition, PIK3CA 
mutations have also been linked to cancer initiation 
through ER signaling [30, 31].

TP53 mutations are harbored by most cancers and 
are also associated with therapeutic resistance and poor 
prognosis in various cancers [32, 33]. The overall somatic 
mutation rate of TP53 in our cohort was 30%. Mutations 
identified in our cohort are represented in Fig. 3B. TP53 
mutation frequency was lowest in grade 1 and highest 
in grade 3 tumors (FDR corrected P value < 0.05, Fig. 2). 
Similar to PIK3CA, TP53 mutations were also signifi-
cantly different across subtypes based on ER/PR status, 
with the highest mutation rate in triple-negative subtype 
and lowest among ERPR + veHER2-ve tumors. A recent 

Fig. 6  A Distribution of mutations in CDC27, PIK3CA, and TP53 genes in Caucasians and African American patients are represented here. Green 
squares within the matrix indicate Co-occurrence, and the brown squares indicate mutual exclusivity across genes. The color scheme indicates 
the strength of the association, with darker colors indicating stronger co-occurrence or mutual exclusivity between the genes. B, C Reported 
TCGA drivers identified in Caucasians and African American patients are represented here. Yellow squares indicate if the gene was identified 
as an oncogenic driver. C, D Unique mutational signatures identified in Caucasians and African American patients
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report from a Chinese breast cancer cohort found that 
the association of TP53 mutations to pathological grade 
is consistent with our observations [34].

Several driver genes were identified in this cohort. 
Several genes, including TP53, PIK3CA, CDC27, CDH1, 
STK39, CBFB, MAP3K1, and GATA3, were identified 
across different comparison groups as the top-ranked 
driver genes, in addition to few unique drivers (Fig. 7).

These genes include IGFBP2 in ERPR + veHER2-
ve tumors, TSFM in triple-negative tumors, FEZ2 in 
ERPR-veHER2 + ve tumors, and TBX3 in tumors with 

Ki67 expression. GATA3 is a transcriptional factor crit-
ical for breast development and is associated with lumi-
nal transcription in breast cancer [35]. Loss of GATA3 
expression leads to the dedifferentiation of luminal epi-
thelial cells, leading to cancer progression and metasta-
sis [36]. The somatic mutation rate of GATA3 was 13% 
in our cohort (Fig.  3C). GATA3 expression is corre-
lated to estrogen receptor alpha expression and better 
prognosis and is frequently mutated in breast cancer 
[37–39]. Mutations in GATA3, particularly in the DNA 
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binding domain, caused altered transcription factor 
localization leading to dedifferentiation [40].

Serine/Threonine Kinase 39 (STK39) regulates osmotic 
stress responses, and reports have linked lower expres-
sion to treatment resistance in breast and prostate can-
cers [41, 42]. STK39 has also been implicated in several 
other cancers, including lung, osteosarcoma, and renal 
carcinoma [43–45]. In breast cancer, STK39 is reported 
as an early antigen, and its expression was associated 
with poor prognosis [46]. A recent report has identified 
the involvement of STK39 in breast cancer progression 
and metastasis [47]. Our study identified STK39 as a 
driver in patients with stage I tumors and those with no 
nodal involvement (N0). Tumors with high Ki67 expres-
sion, IDC subtype, or tumors of TN subtype also had 
higher mutations in STK39.

CBFB (Core-Binding Factor Subunit Beta), a transcrip-
tional co-factor for RUNX proteins, is mutated in 6.7% of 
our BC cohort (4% reported in TCGA PanCancer Atlas 
dataset, CBioPortal). CBFB/RUNX1 axis is reported to 
function as a tumor suppressor in breast cancer [48, 49]. 
TP53 and CBFB mutations were mutually exclusive, and 
their association has been shown to interact with TAp73 
expression, which acts as a tumor suppressor in breast 
cancer [50]. In addition, CBFB is also shown to bind to 
a large pool of mRNAs and enhance translation in breast 
cancer cells [48]. We identified CBFB as a cancer driver in 
most subgroups in our breast cancer patients.

Investigation of the prognostic value of gene muta-
tions revealed that TP53 mutations were significantly 
correlated with lower survival in stage 2, stage 3 and 4, 
Nplus, ERPR + veHER2-ve, and IDC subgroups (Addi-
tional file 2: Fig. S15). NBPF1 mutations were associated 
with shorter survival in stage 3 and 4, Ki67-high, TN, 
and African Americans in our cohort. NBPF1 (Neuro-
blastoma Breakpoint Family, member 1) is a tumor sup-
pressor gene associated with several cancers, including 
gastric cancer and neuroblastoma [51, 52]. Functional 
studies in cervical cancer cell lines identified NBPF1 reg-
ulation of cell invasion and apoptosis by activating PI3K/
mTOR signaling pathways, which are key mechanisms 
in cancer progression [53]. The role of NBPF1 in breast 
cancer is still unknown, though it is reported that NBPF1 
mutations in noncoding regulatory regions are higher in 
breast cancer patients [54], along with hypermethylation 
[55]. Additional studies to characterize NBPF1 function 
and recurrent mutations in breast cancer are warranted.

MUC5B mutations were associated with a higher risk 
of death in grade 2 and ERPR + veHER2-ve subgroups. 
MUC2 mutations, on the other hand, provided a survival 
advantage among stage 2 and triple-negative BCs in our 
cohort. Mucins are O-glycosylated proteins expressed at 
the surface of epithelial cells and are involved in epithelial 

differentiation, cell signaling, cell adhesion, invasion, and 
growth [56]. Mucins are associated with tumor cell dif-
ferentiation and proliferation through ligand–receptor 
interactions and morphogenetic signal transduction [56]. 
MUC5B expression is disrupted in breast cancers and is 
associated with increased cell proliferation and metasta-
sis of breast cancers and can be explored as a cancer bio-
marker and a therapeutic target [57, 58]. MUC5B, along 
with other mucins, is also associated with 5-FU and cis-
platin resistance [59]. MUC gene expression and recur-
rent mutations in BC subgroups should be investigated 
further, given the prognostic value of MUC genes.

PAPBCI, NEFH, DNHD1, GATA3, GPR98, and 
ACO11841.1 confer a prognostic advantage in several 
BC subgroups. GPR98 was associated with a higher risk 
of metastasis in stage 3 and 4, ERPR + veHER2-ve sub-
groups, and in Caucasian patients (Additional file 2: Fig. 
S16). GPR98 belongs to a family of adhesion GPCRs that 
are less explored in breast cancer. These adhesion GPCRs 
are involved in several functions like cell adhesion, cell 
motility, cell guidance, and tumor cell interactions [60–
62]. GPR98, a.k.a ADGRV1, has a reported mutation fre-
quency of 2% in the TCGA breast cancer cohort and is 
one among the frequently mutated GPCR in TCGA can-
cers [63]. There are no additional reports of GPR98 muta-
tions in breast cancer, and the functional consequence of 
these mutations in breast cancer is unknown.

Several mutational signatures were identified across 
different BC subgroups in our study. These mutational 
signatures are left behind specific patterns ‘signatures’ 
correlated with DNA damage repair defects, exposure 
to carcinogens, or combinations of structural variants 
that can be extracted using matrix decomposition algo-
rithms such as NMF. Mutational signatures including 
SBS29 (Aetiology: exposure to tobacco (chewing) muta-
gens), SBS5 (Aetiology: Unknown), and SBS38 (Aeti-
ology: Potential indirect damage from UV-light) were 
identified across most of our comparison groups (ZT10). 
For instance, several interesting mutational signatures, 
SBS3 representing ‘Defects in DNA-DSB repair by HR’ 
was identified in cancers with Ki67-high expression and 
lymph node-positive cancers. These mutational signa-
tures are reported to be associated with characteristic 
changes in tumor histology, gene expression, or gene 
mutations [64].

This study presents results from a large breast cancer 
cohort from the US Midwest. Though this study is suf-
ficiently large, the percentage of several subgroups within 
this cohort is underrepresented. For example, the Afri-
can American population in this cohort is extremely 
low, reflecting the local population structure. In addi-
tion, only 17% of the breast cancer patients in this cohort 
have developed recurrence. These factors should be 
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considered when analyzing the genomic characteristics 
of these underrepresented patient-specific groups.

Conclusion
We report here a large, well-characterized breast cancer 
cohort from the US Midwest. Somatic variants identified 
across different patient groups were analyzed, and sev-
eral variants related to different subgroups were identi-
fied. For example, in our cohort, mutations in PIK3CA 
and TP53 were mutually exclusive, and this was pro-
nounced across the different grades. Grade 1 tumors had 
higher PIK3CA mutations, whereas grade 3 tumors had 
higher TP53 mutations. In addition to the characteristic 
mutations associated with each subtype, we also identi-
fied several driver mutations, including TP53, PIK3CA, 
CDC27, CDH1, STK39, CBFB, MAP3K1, and GATA3, 
across different groups. Further studies on understanding 
the functional relevance of these mutations in BC onco-
genesis are warranted.

Materials and methods
Patient samples and clinical information
Tumor and germline samples were collected from 554 
patients. Tumor tissue collected was either FFPE pre-
served, frozen, or fresh. This study was approved by the 
Institutional Review Board (IRB) of the University of 
Nebraska Medical Center (0155-13-EP, and the IRB for 
the data collection (iCaRe2) is 253-13-EP). Patients gave 
their informed written consent to participate in this 
study. All paired tumor and germline specimens were 
processed using whole-exome sequencing to identify 
somatic variants that include single nucleotide variants 
(SNVs) and insertions/deletions (indels). Patient char-
acteristics are depicted in Table 1. Patients were further 
classified according to different biological and tumor-
specific parameters, including grade, stage, hormone 
receptor status, histological subtype, Ki67 expression, 
lymph node status, and race. Three patients presented 
with bilateral breast cancers, and each cancer was 
sequenced separately, though only one representative 
tumor was included in this study. All patients enrolled in 
this study were followed up for a median follow-up time 
of 7.6 years.

Tissue collection and sample processing
Oncologists and pathologists from all participating sites 
worked collaboratively to select breast cancer patients for 
the whole-exome DNA sequence study. The initial Fred 
and Pamela Buffett Cancer Center (FPBCC) or external 
site review of breast cancer specimens determined (1) 
whether there was an adequate number and percentage 
(> 35%) of tumor cells in the specimen; (2) if the speci-
men would be appropriate for the whole-exome DNA 

sequence analysis, and (3) if a corresponding patient 
white blood cell (WBC) specimen collected through the 
FPBCC’s iCaRe2 Breast Cancer Registry or confirmed 
adjacent normal (unaffected) tissue was available for ger-
mline analysis. FFPE tissue blocks passing initial external 
site review were sent to FPBCC pathology for central-
ized local review. Approved specimens were processed 
by the UNMC Tissue Science Facility for the prepara-
tion of 10-micron unstained tissue sections embedded 
on glass slides. DNA isolation from corresponding 
patient germline WBC and FFPE tumor (or normal adja-
cent germline) specimens was performed by the FPBCC 
Molecular Biology/High-Throughput Screening Facil-
ity. DNA was extracted and purified from WBC or fresh 
frozen and FFPE samples using QIAamp DNA Mini and 
QIAamp DNA FFPE Tissue (QIAGEN) kits, respectively, 
as per the manufacturer’s instructions. Purified DNA 
isolates were quantified by Nanodrop 2000, followed 
by double-stranded DNA assessment using Qubit (3.0) 
dsDNA HS Assay kit (Invitrogen), adjusted to a standard-
ized volume of 50 µl and stored at -80̊C.

Whole‑exome sequencing
Whole-exome sequencing (WES) was performed on 
DNA extracted from paired tumor-germline samples 
from all patients. The samples were processed as fol-
lows: 200 ng of genomic DNA of each sample was used 
as the starting material and processed using the Agi-
lent SureSelect XT/ Clinical Research Exome kit as per 
the recommended procedure. Prepared libraries were 
then sequenced with a paired end read length of 150 bp 
on an Illumina HiSeq2500 sequencer using HiSeq V3 
reagents. WES data in FASTQ format were processed 
to remove adapters, unknown terminal bases (Ns), and 
low-quality 3’ regions (Phred score < 30) using fqtrim 
(http://​ccb.​jhu.​edu/​softw​are/​fqtrim/, DOI-https://​doi.​
org/​10.​5281/​zenodo.​593893). The quality of trimmed 
reads was assessed using FastQC [65], and those pass-
ing FastQC assessment were aligned to the human refer-
ence genome (hg19) with Borrows-Wheeler Aligner (v.0.7) 
[66]. The aligned reads were further processed through 
the GATK pipeline [67, 68] for base quality score recali-
bration, INDEL (insertions and deletions) realignment, 
and mark duplicates, according to GATK’s best practices 
recommendations [68, 69]. Four variant callers, MuTect 
(v.3.1) [70], freebayes (v1.1.0-4) [71], VarDict [72], and 
VarScan (v.2.4) [73] were used to take both tumor and 
normal/germline bam files as input and to call somatic 
variants. The ensemble method was employed to iden-
tify somatic variants that were called by at least two of 
the four variant callers. These analyses were performed 
using the cancer variant calling pipeline incorporated in 
the bcbio-nextgen python toolkit (https://​github.​com/​

http://ccb.jhu.edu/software/fqtrim/
https://doi.org/10.5281/zenodo.593893
https://doi.org/10.5281/zenodo.593893
https://github.com/chapmanb/bcbio-nextgen
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chapm​anb/​bcbio-​nextg​en). The VCF (variant call format) 
files generated from the pipeline were further annotated 
using ANNOVAR [74] and VEP [75] to identify the dele-
terious consequences of the genomic variations on splice 
junctions, protein structure and function, downstream 
effects on signaling pathways, and gene/protein interac-
tion networks.

Mutation analyses
Synonymous mutations and variants falling into intronic 
and untranslated regions were not considered in this 
analysis. Frequently mutated genes in each study group 
(based on seven different clinical, histological, and demo-
graphic parameters) were analyzed and compared. Mut-
SigCV algorithm at default settings was used to identify 
significantly mutated genes compared with background 
mutation rates in each subgroup [76]. In addition to iden-
tifying driver genes using MutSigCV, we also identified 
cancer-associated variants using Cancer Hotspots [77], 
CScape [78], CHASMplus [79], Mutpanning [80], Clin-
gen [81], Clinvar [82], GRASP [83], and GWAS Catalogue 
[84]. For CHASMplus, we selected only those variants 
that are linked to breast cancer (CHASMplus BRCA) 
and selected variants with a P-value cut off of 0.05. For 
CScape, variants with a cutoff score of 0.89 were chosen 
as oncogenic. Mutpanning identifies cancer driver genes 
by modeling the mutation probability of each genomic 
position depending on its neighboring nucleotide archi-
tecture and background mutation rate. A Q-value cut-
off of 0.05 was used to determine if a gene variant was 
oncogenic. For Clingen, Clinvar, GRASP, and GWAS 
Catalogue, a gene variant was selected as oncogenic if 
their curated database provided evidence for cancer 
association.

We also classified variants as deleterious or pathogenic 
using several algorithms, including Funseq2 [85], DANN 
[86], ALoFT [87], CADD [88], FATHMM [89], MetaLR 
[15], MetaSVM [15], PhD-SNPg [90], REVEL [91], and 
VEST [92]. The python package, openCRAVAT, was used 
to perform all the genomic variant interpretations for 
cancer-associated and deleterious variants [93]. Tumor 
Mutation Burden (TMB) was calculated for each sample 
using the total number of non-synonymous variants with 
functional impact divided by the length of the mega-base 
in coding regions captured with the exome sequencing. 
Survival analysis was performed for mutations identified 
in our analysis across all groups using the Kaplan–Meier 
survival analyses implemented in the R/Bioconductor 
package, Maftools [94]. A two-sided P < 0.05 was consid-
ered statistically significant in this analysis. Mutational 
patterns including mutual exclusivity and co-occurrence 
were also determined for top 25 mutated genes in each 
group using Maftools.

Mutations in important oncogenic signaling path-
ways identified to be frequently mutated in cancer were 
also profiled across different groups in our study [95]. 
This study analyzed key candidate genes in each of these 
oncogenic pathways curated based on TCGA mutation 
profiles, literature review, and databases [95].

Mutation signature analyses
Mutation signature analyses were performed using 
Maftools [94] that extracts the 5′ and 3′ bases adjacent to 
the mutation and creates a 96 × sample size count matrix 
using the ‘trinucleotideMatrix’ function. The ‘extractSig-
natures’ function in Maftools uses NMF (non-negative 
matrix factorization) to factorize this count matrix to 
identify the optimal rank r. Mutational signatures identi-
fied through matrix factorization were compared to well-
characterized and annotated signatures in the COSMIC 
database [provide reference].

APOBEC enrichment analyses
APOBEC signature is one of the most prominent muta-
tion signatures in cancer, present in half of the human 
tumors. Signatures of APOBEC cytidine deaminase 
DNA-editing-enriched samples in our cohort were iden-
tified using Maftools, which calculates an enrichment 
score associated with the APOBEC-related mutagenic 
processes in each sample by comparing the C > T muta-
tions within the tCw motif among ± 20 nucleotides sur-
rounding each mutated cytosine to the background [96]. 
Samples were classified into APOBEC-enriched (enrich-
ment score > 2) and non-APOBEC-enriched (enrichment 
score < 2). Genes overrepresented in the APOBEC-
enriched samples were identified using one-way Fisher’s 
exact test.
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and TP53 gene mutations. Figure S3: Tumor Mutation Burden compared 
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subtypes. The upper panel of the figure provides the distribution of tumor 
mutation burden for each patient assigned to ER/PR+veHER2-ve, ER/
PR+veHER2+ve, ER/PR-ve HER2+ve, or Triple-negative. Patient character‑
istics, including vital status, family history, subtype status, and age, are also 
included for each group. The bottom panel represents the top mutated 
genes across the three groups. The percentage of deleterious variants in 
each gene is also represented, along with the type of mutation detected. 
Figure S5: Distribution of patient cohort across the histological subtypes. 
The upper panel of the figure provides the distribution of tumor mutation 
burden for each patient assigned to Invasive lobular carcinoma (ILC), Inva‑
sive ductal carcinoma (IDC), and Other. Patient characteristics, including 
vital status, family history, subtype status, and age, are also included for 
each group. The bottom panel represents the top mutated genes across 
the three groups. The percentage of deleterious variants in each gene is 
also represented, along with the type of mutation detected. Figure S6: 
Tumor Mutation Burden compared across the histological subtypes. The 
redline indicates median TMB.
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