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Abstract 

Background:  Aerobic glycolysis is an emerging hallmark of cancer. Although some studies have constructed 
glycolysis-related prognostic models of colon adenocarcinoma (COAD) based on The Cancer Genome Atlas (TCGA) 
database, whether the COAD glycolysis-related prognostic model is appropriate for distinguishing the prognosis of 
rectal adenocarcinoma (READ) patients remains unknown. Exploring critical and specific glycolytic genes related to 
READ prognosis may help us discover new potential therapeutic targets for READ patients.

Results:  Three gene sets, HALLMARK_GLYCOLYSIS, REACTOME_GLYCOLYSIS and REACTOME_REGULATION_OF_GLYC-
OLYSIS_BY_FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM, were both significantly enriched in both COAD and READ 
through glycolysis-related gene set enrichment analysis (GSEA). We found that six genes (ANKZF1, STC2, SUCLG2P2, 
P4HA1, GPC1 and PCK1) were independent prognostic genes in COAD, while TSTA3 and PKP2 were independent 
prognostic genes in READ. Glycolysis-related prognostic model of COAD and READ was, respectively, constructed 
and assessed in COAD and READ. We found that the glycolysis-related prognostic model of COAD was not appropri-
ate for READ, while glycolysis-related prognostic model of READ was more appropriate for READ than for COAD. PCA 
and t-SNE analysis confirmed that READ patients in two groups (high and low risk score groups) were distributed 
in discrete directions based on the glycolysis-related prognostic model of READ. We found that this model was an 
independent prognostic indicator through multivariate Cox analysis, and it still showed robust effectiveness in differ-
ent age, gender, M stage, and TNM stage. A nomogram combining the risk model of READ with clinicopathological 
characteristics was established to provide oncologists with a practical tool to evaluate the rectal cancer outcomes. 
GO enrichment and KEGG analyses confirmed that differentially expressed genes (DEGs) were enriched in several 
glycolysis-related molecular functions or pathways based on glycolysis-related prognostic model of READ.

Conclusions:  We found that a glycolysis-related prognostic model of COAD was not appropriate for READ, and 
we established a novel glycolysis-related two-gene risk model to effectively predict the prognosis of rectal cancer 
patients.
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Introduction
Colorectal cancer (CRC), including colon cancer and rec-
tal cancer, is the third most commonly diagnosed malig-
nancy and ranks second in terms of mortality among 
cancers globally [1, 2]. It is estimated that the incidence of 
CRC will increase to 2.5 million new cases worldwide in 
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2035 due to the constant increase in developing countries 
and increased morbidity in younger people [3]. Although 
colon cancer and rectal cancer have been regarded as the 
same disease over the past decades, accumulating evi-
dence has revealed that rectal cancer is different from 
colon cancer in many aspects, such as embryological ori-
gins, anatomy, risk factors, sensitivities to carcinogens, 
microbiota, and genetic subtypes [3–5]. Moreover, rec-
tal cancer is the most common subtype among Asians, 
and the past decade has witnessed an increasing trend 
of early-onset rectal cancer (diagnosis before 50  years 
of age) [2, 4, 6, 7], which has constituted a formidable 
challenge in China and needs further investigation [4, 
8]. Various biomarkers associated with the survival and 
prognosis of rectal cancer have been explored in the past. 
However, a single gene or biomarker cannot accurately 
predict the outcomes of cancer patients. The past decade 
has witnessed the soaring development of high-through-
put sequencing [9–12], which has expanded our insight 
into the genetic alterations of rectal cancer and made it 
possible to establish multiple-gene predictive models 
using clinical and genetic data obtained from the public 
databases [13–15]. An mRNA-based gene signature for 
predicting rectal cancer patient outcomes is still needed 
in the present context.

Reprogramming energy metabolism is an emerging 
hallmark of cancer [16]. Even in the presence of oxygen, 
tumor cells give priority to glycolysis rather than mito-
chondrial oxidative phosphorylation for glucose catabo-
lism, resulting in a state termed “aerobic glycolysis” or 
the “Warburg effect” [17]. A well-acknowledged rationale 
for the glycolytic switch in tumor cells is that increased 
glycolysis is employed by proliferating cells as a versatile 
product line, which continuously generates glycolytic 
intermediates for various biosynthetic pathways to satisfy 
the requirement for active cell proliferation [18]. Thus, 
exploring critical glycolytic genes related to rectal cancer 
prognosis may help us discover new potential therapeutic 
targets.

In this study, we found that a glycolysis-related prog-
nostic model of colon cancer could not distinguish the 
prognosis of rectal cancer patients through bioinformatic 
analysis based on The Cancer Genome Atlas (TCGA) 
database. Moreover, we discovered the critical and spe-
cific glycolysis-related genes that participate in the devel-
opment of rectal cancer using bioinformatic methods 
and established a practical model to predict rectal cancer 
patients’ prognosis.

Materials and methods
Study design
Our study compared glycolysis-related gene sets through 
gene set enrichment analysis (GSEA) and compared 

glycolysis-related independent prognosis genes between 
colon adenocarcinoma (COAD) and rectal adenocar-
cinoma (READ). Glycolysis-related prognostic model 
of COAD and READ was, respectively, constructed and 
assessed in COAD and READ. Assessment of the glyco-
lysis-related READ prognostic model in READ patients 
was further performed through time-dependent receiver 
operating characteristic curve (time ROC) analysis, uni-
variate and multivariate Cox analyses, principal com-
ponent analysis (PCA) analysis, t-distributed stochastic 
neighbor embedding (t-SNE) analysis, Gene Ontology 
(GO) enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses. A nomogram combining the 
risk model of READ with clinicopathological character-
istics was established for READ. The workflow for this 
study is shown in Additional file 1: Fig. S1.

Data collection
The mRNA expression profile of 144 READ and 8 adja-
cent normal rectal tissues were downloaded from the 
TCGA Genomic Data Commons (GDC) database 
(https://​portal.​gdc.​cancer.​gov/). The mRNA expression 
profiles of 398 COAD and 39 adjacent normal colon tis-
sues were also downloaded from the TCGA GDC data-
base. The mRNA profiles were standardized by log2 
transformation for further analysis. However, only 142 
rectal cancer samples were documented with mRNA 
expression profiles and detailed clinicopathological infor-
mation, including age, gender, American Joint Commit-
tee on Cancer (AJCC) TNM stage, T stage, N stage, M 
stage and survival status. The detailed clinical features of 
142 rectal cancer patients are shown in Table 1. Patients 
whose follow-up time was absent, zero-days or unknown 
were excluded from the survival analysis. Finally, 135 
READ patients and 363 COAD patients were enrolled for 
further survival analysis of glycolysis-related genes.

Gene set enrichment analysis (GSEA)
Gene sets enrichment analysis (GSEA) was conducted 
by GSEA software 4.10 from the Broad Institute [19] 
to identify the gene sets enriched between cancer tis-
sues and adjacent normal tissues. A total of 12 gly-
colysis-related gene sets were downloaded from the 
Molecular Signatures Database (MSigDB) (https://​www.​
gsea-​msigdb.​org/​gsea/​msigdb/​genes​ets.​jsp). To acquire a 
normalized enrichment score (NES), we conducted 1000 
times gene set permutations for each analysis. When 
|NES| > 1, nominal p value < 0.1 and false discovery rate 
(FDR) q value < 0.1, the investigated gene sets were con-
sidered statistically significant. Glycolysis-related genes 
were extracted from the analysis performed by GSEA. 
We utilized the “limma” R package for analysis, which 
in turn yielded glycolysis-related differentially expressed 
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genes (DEGs), with filtering criteria of p value < 0.05 and 
log2 fold change (log2FC) ≠ 0.

Standardization of data processing and construction 
of the risk score model
Univariate Cox regression analysis was first performed 
to screen out genes that were associated with overall sur-
vival (OS) (p value < 0.05). Subsequently, the identified 
genes were subjected to multivariate Cox regression anal-
ysis, and the corresponding regression coefficients related 
to OS were also acquired. When the values of hazard 
ratio (HR) are larger than 1, the corresponding factor is 
considered a risk factor. We used the “Cox. Zph” function 
to test the Cox proportional risk model in the “survival” 

R package. When the p value of each covariate and global 
test is > 0.05, it is considered that the Cox model conforms 
to the proportional risk hypothesis. In this study, glycol-
ysis-related gene risk conformed to the proportional risk 
hypothesis and was constructed using the “coxph” func-
tion in the “survival” R package. The risk score formula 
is as follows: Risk score =

∑
n

i=1 expression of Gi × βi 
(“G” means gene; “i” means order of genes; “n” means the 
number of prognostic genes; “β” means the regression 
coefficient of the corresponding gene after multivariate 
Cox analysis). According to the median risk score, all the 
included patients were divided into either the high-risk 
group and low-risk group.

Assessment of the risk score model in rectal cancer 
patients
Kaplan–Meier survival curves were drawn to show the 
survival rate difference between the two groups with a 
p value < 0.05 considered statistically significant. A ROC 
curve was plotted to evaluate the sensitivity and speci-
ficity of the risk score model. When the area under the 
curve (AUC) is 0.5–0.7, the risk score model has accept-
able efficiency. When the AUC is larger than 0.7, the 
risk score model has good accuracy. The “ggplot2” and 
“pheatmap” R packages were used to plot heat maps and 
survival status charts. PCA and t-SNE were performed 
to explore the distribution of different groups using the 
“Rtsne” R package. The “rms” R package was used to plot 
the nomogram for predicting the survival of rectal cancer 
patients. The time-dependent ROC curves and calibra-
tion plots were depicted to evaluate the efficiency of the 
nomogram.

Functional enrichment analysis
The “clusterProfiler” R package was utilized to conduct 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses based on the DEGs 
(|Log2FC| > 0.6, FDR < 0.05) between the high-risk and 
low-risk groups. P values were adjusted with the Benja-
mini–Hochberg (BH) method.

Statistical analysis
All relevant statistical analyses were performed with R 
software (R4.0.2, https://​www.r-​proje​ct.​org/).

Result
GSEA of glycolysis‑related genes in COAD and READ
GSEA was, respectively, conducted to explore whether 
glycolysis-related gene sets were significantly enriched 
in the colon cancer and rectal cancer. Twelve glyc-
olysis-related gene sets were investigated. Five gene 
sets, highlighted in boldface in Table  2, HALL-
MARK_GLYCOLYSIS, REACTOME_GLYCOLYSIS, 

Table 1  Clinical features in READ patients

Variables Patients, n (%)

Sex

 Male 77 (54.2%)

 Female 65 (45.8%)

Age, years

 ≤ 65 73 (51.4%)

 > 65 69 (48.6%)

TNM stage

 I 26 (18.3%)

 II 41 (28.9%)

 III 45 (31.7%)

 IV 22 (15.5%)

 Unknown 8 (5.6%)

T stage

 T1 7 (4.9%)

 T2 25 (17.6%)

 T3 98 (69.0%)

 T4 11 (7.8%)

 Unknown 1 (0.7%)

N stage

 N0 70 (49.2%)

 N1 40 (28.2%)

 N2 29 (20.4%)

 N3 0 (0.0%)

 NX 2 (1.4%)

 Unknown 1 (0.7%)

M stage

 M0 106 (74.6%)

 M1 21 (14.9%)

 MX 13 (9.1%)

 Unknown 2 (1.4%)

Follow up time

 = 0 day or unknown 7 (4.9%)

 > 0 day 135 (95.1%)

https://www.r-project.org/
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REACTOME_REGULATION_OF_GLYCOLYSIS_BY_
FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM, 
BIOCARTA_FEEDER_PATHWAY and BIOCARTA_
GLYCOLYSIS_PATHWAY, were significantly enriched 
in the colon cancer samples (|NES| > 1, nominal p 
value < 0.1 and FDR q value < 0.1), as shown in Table  2. 
Four gene sets, highlighted in boldface in Table 2, HALL-
MARK_GLYCOLYSIS, REACTOME_GLYCOLYSIS, 
GO_FRUCTOSE_1_6_BISPHOSPHATE_METABOLIC_
PROCESS, and REACTOME_REGULATION_OF_GLY-
COLYSIS_BY_FRUCTOSE_2_6_BISPHOSPHATE_
METABOLISM, were significantly enriched in the rectal 
cancer samples (|NES| > 1, nominal p value < 0.1 and FDR 
q value < 0.1), as shown in Table 2. Three gene sets, HALL-
MARK_GLYCOLYSIS, REACTOME_GLYCOLYSIS, and 

REACTOME_REGULATION_OF_GLYCOLYSIS_BY_
FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM, 
were both significantly enriched in the colon cancer and 
rectal cancer.

Comparison of glycolysis‑related prognostic genes 
between COAD and READ
A total of 316 genes in the above gene sets were included 
for further analysis. Subsequently, 199 glycolysis-related 
DEGs in READ and 254 glycolysis-related DEGs in 
COAD were, respectively, identified with p value < 0.05 
and |log2FC| > 0 as the cutoff standard. To further, 
respectively, explore prognostic genes in COAD and 
READ, glycolysis-related DEGS were analyzed by uni-
variate Cox regression. Nine genes (STC1, ANKZF1, 
STC2, SDHB, SUCLG2P2, P4HA1, PPFIA4, GPC1 and 
PCK1) in COAD and 4 genes (TSTA3, IDH3A, PKP2 and 
ACO2) in READ were found to be significantly associ-
ated with overall survival (OS) (p value < 0.05) (Table 3). 
No same genes were both significantly associated with 
OS in COAD and READ. Subsequently, multivariate 
Cox regression analysis was, respectively, performed in 
COAD and READ. Six genes including ANKZF1, STC2, 
SUCLG2P2, P4HA1, GPC1 and PCK1 were proven to be 
independent prognostic factors in COAD (Table 4). Two 
genes, TSTA3 and PKP2, were proven to be independent 
prognostic factors in READ (Table 4). We compared the 
expression levels of the above genes between the can-
cer tissues and adjacent normal tissues, and found that 
ANKZF1, STC2 and P4HA1 were significantly upregu-
lated, while SUCLG2P2 and PCK1 were downregulated 
in both COAD and READ among the independent prog-
nostic genes of COAD (Fig. 1). Although GPC1 was sig-
nificantly upregulated in COAD, it was not upregulated 

Table 3  Glycolysis-related prognostic genes in COAD and READ 
by univariate analysis

Cancer type Gene HR 95% CIs P value

COAD STC1 1.396 1.053–1.849 0.020

ANKZF1 1.963 1.110–3.470 0.020

STC2 1.251 1.010–1.548 0.040

SDHB 0.490 0.301–0.799 0.004

SUCLG2P2 0.109 0.034–0.345 0.000

P4HA1 1.482 1.062–2.067 0.021

PPFIA4 5.078 2.154–11.970 0.000

GPC1 1.406 1.075–1.839 0.013

PCK1 0.802 0.655–0.981 0.032

READ TSTA3 2.661 1.301–5.443 0.007

IDH3A 0.364 0.167–0.794 0.011

PKP2 0.419 0.238–0.737 0.002

ACO2 0.493 0.290–0.837 0.008

Table 4  Glycolysis-related gene risk model for predicting READ prognosis

Cancer type Gene β (coef) HR 95% CI P value

COAD ANKZF1 0.543 1.722 0.972–3.049 0.062

STC2 0.257 1.293 1.030–1.624 0.027

SUCLG2P2  − 2.124 0.120 0.035–0.407 0.001

P4HA1 0.359 1.432 1.013–2.025 0.042

GPC1 0.326 1.385 1.040–1.843 0.026

PCK1  − 0.256 0.774 0.632–0.950 0.014

Risk model formula =
∑

n

i=1 expression of Gi × β i = expression of ANKZF1 × 0.543 + expression of 
STC2 × (0.257) + expression of SUCLG2P2 × (− 2.124) + expression of P4HA1 × (0.359) + expression of 
GPC1 × (0.326) + expression of PCK1 × (− 0.256)

Cancer type Gene β (coef) HR 95% CI P value

READ TSTA3 0.752 2.121 1.067–4.218 0.032

PKP2  − 0.725 0.484 0.274–0.856 0.013

Risk model formula =
∑

n

i=1 expression of Gi × β i = expression of TSTA3 × 0.752 + expression of PKP2 × (− 0.725)
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in READ (Fig.  1). Among the independent prognostic 
genes of READ, we found that TSTA3 was significantly 
upregulated while PKP2 was downregulated in both 
COAD and READ (Fig. 2). Taken together, these results 
indicated that there existed different glycolysis-related 
prognosis genes between COAD and READ.

The glycolysis‑related COAD prognostic model 
is not appropriate for READ
Above all, we established a risk score model based on the 
independent prognostic genes of COAD to, respectively, 
evaluate COAD and READ patient survival. The risk 
score model formula is as follows: risk score = expression 
of ANKZF1 × (0.543) + expression of STC2 × (0.257) 
+ expression of SUCLG2P2 × (− 2.124) + expression 
of P4HA1 × (0.359) + expression of GPC1 × (0.326) + 
expression of PCK1 × (− 0.256) (Table 4).

COAD patients were divided into a high-risk group and 
a low-risk group according to the median risk score of 
the whole COAD patients. We found that COAD patients 
with a high-risk score had a shorter OS than those with a 
low-risk score (Fig. 3A). A ROC curve was further drawn 
to evaluate the reliability of this prognostic model. The 
AUC of this predictive model accumulated steadily over 
time and came to 0.781 at 3 years, indicating a satisfac-
tory sensitivity and specificity of this model in predict-
ing survival for COAD patients (Fig. 3C). We wondered 
whether a risk score model of COAD could distinguish 
the prognosis of READ patients. The risk score of READ 
patients was calculated according to the risk model for-
mula of COAD. READ patients were also divided into a 
high-risk group and a low-risk group according to the 
median risk score of the whole COAD patients. We found 
that the glycolysis-related prognostic model of COAD 
could not distinguish the prognosis of READ patients 

Fig. 1  The expression levels of COAD prognostic genes in COAD and READ. A–F The expression levels of ANKZF1 (A), STC2 (B), SUCLG2P2 (C), 
P4HA1 (D), GPC1 (E) and PCK1 (F) between cancer and adjacent normal tissue in COAD. (G-M)The expression levels of ANKZF1 (G), STC2 (H), 
SUCLG2P2 (I), P4HA1 (J), GPC1 (K) and PCK1 (M) between cancer and adjacent normal tissue in READ
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according to Kaplan–Meier survival analysis (Fig.  3C). 
Moreover, the AUC of the ROC curve was 0.554 at 
3  years in READ (Fig.  3D), which was lower than the 
AUC in COAD. In addition, READ patients were divided 
into a high-risk group and a low-risk group according to 
the median risk score of the whole READ patients based 
on COAD prognostic model. The survival curves of the 
high-risk group and low-risk group crossed with the p 
value > 0.05 in READ (Additional file 1: Fig. S2A). These 

results indicated that the glycolysis-related prognostic 
model of COAD is not appropriate for READ.

The glycolysis‑related READ prognostic model is suitable 
for READ
Subsequently, we established risk score model based 
on the independent prognostic gene of READ to, 
respectively, evaluate READ and COAD patients’ sur-
vival. The risk score model formula is as follows: risk 
score = expression of TSTA3 × (0.752) + expression of 
PKP2 × (− 0.725) (Table 4). READ patients were divided 
into a high-risk group and a low-risk group according to 
the median risk score of the whole READ patients. We 
found that READ patients with a high-risk score had a 
shorter OS than those with a low-risk score (Fig. 4A). A 
ROC curve was drawn to evaluate the reliability of this 
prognostic model. The AUC of this predictive model 
accumulated steadily over time and came to 0.783 at 
3  years, indicating a satisfactory sensitivity and speci-
ficity for this model in predicting the survival of READ 
patients (Fig.  4C). We wondered whether the risk score 
model of READ could distinguish the prognosis of 
COAD patients. Risk score of COAD patients was cal-
culated according to the risk model formula of READ. 
COAD patients were also divided into a high-risk group 
and a low-risk group according to the median risk score 
of the whole READ patients. We found that the survival 
curves of the high-risk group and low-risk group crossed 
despite the p value < 0.05 in COAD (Fig.  4B). In addi-
tion, the AUC was 0.542 at 3  years in COAD (Fig.  4D), 
which was lower than the AUC in READ. In addition, 
COAD patients were divided into a high-risk group and a 
low-risk group according to the median risk score of the 
whole COAD patients based on READ prognostic model. 
The survival curves of the high-risk group and low-risk 
group still crossed with the p value > 0.05 in COAD 
(Additional file 1: Fig. S2B). These results indicated that 
the READ risk score model was more appropriate for 
READ than for COAD.

To provide visualization of risk score, survival status, 
and gene expression in READ. The risk score, survival sta-
tus, and gene expression of the two genes in each READ 
patient are shown in Fig. 5A–C. PCA and t-SNE analysis 
confirmed that READ patients in the two subgroups were 
distributed in discrete directions (Fig. 5D–E).

Assessment of the glycolysis‑related READ prognostic 
model in READ patients
To evaluate this prediction model’s clinical utility, univar-
iate and multivariate Cox proportional hazards regres-
sion analyses were conducted to compare this two-gene 
risk model with common clinicopathological features. 

Fig. 2  The expression levels of READ prognostic genes in COAD and 
READ. A, B The expression levels of TSTA3 (A) and PKP2 (B) between 
cancer and adjacent normal tissue in READ. C, D The expression levels 
of TSTA3 (C) and PKP2 (D) between cancer and adjacent normal 
tissue in COAD



Page 8 of 17Liu et al. Human Genomics            (2022) 16:5 

Univariate analysis showed that age, TNM stage, and risk 
score were associated with rectal cancer patient survival 
(Fig. 6A). These three factors were further proven to be 
independent prognostic indicators in the subsequent 
multivariate Cox analysis (Fig.  6B), indicating that the 
two-gene risk model can serve as a promising tool for 
predicting the prognosis of patients with rectal cancer. 
The Kaplan–Meier curves illustrated that patients with 
older age, higher N stage, metastasis status, higher TNM 
stage, and a higher risk score had a poor prognosis. In 
contrast, gender and T stage had no effect on prognosis 
of rectal cancer patients (Fig. 6C–H).

To further verify the effectiveness of this two-gene 
model in predicting prognosis in rectal cancers, the 
patients were classified into different subgroups accord-
ing to age (≤ 65  years vs > 65  years), gender (female vs 
male), T stage (T1–2 vs T3–4), N stage (N0 vs N1–2), 
M stage (M0 vs M1) and AJCC TNM stage (stage I–II vs 
stage III–IV). They were subsequently divided into the 
high-risk score and low-risk score groups based on the 
median risk score. Interestingly, the two-gene risk model 
still showed robust effectiveness in the different age, 
gender, M stage, and AJCC stage subgroups (Fig.  7A–
F). However, high-risk scores did not suggest a poor 

Fig. 3  The assessment of glycolysis-related COAD prognostic model in READ and COAD patients. A Kaplan–Meier survival analysis on COAD 
patients between the high-risk and low-risk groups. B Kaplan–Meier survival analysis on READ patients between the high-risk and low-risk groups. C 
AUC of the glycolysis-related COAD prognostic model in predicting survival in COAD patients. D AUC of glycolysis-related COAD prognostic model 
in predicting survival in READ patients
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prognosis in the N0 stage and T1–2 stage subgroups 
(Fig. 7A–F), indicating that the risk score model may be 
a more effective prognostic marker in the late stages of 
rectal cancer.

Construction and evaluation of a nomogram incorporating 
the two‑gene risk score model and clinical features
To provide a clinically available and practical tool for 
oncologists to estimate rectal cancer patients’ survival 
time, we established a nomogram combining risk score 

with clinicopathological characteristics (age and TNM 
stage) (Fig.  8A). Calibration plots suggested that the 
nomogram fitted well compared with the ideal model 
representing by the 45° line, as shown in Fig. 8B–D. The 
C-index of the nomogram was 0.852, which indicated 
that this nomogram had an outstanding stability. ROC 
curves showed that the AUCs of the nomogram at 1, 
2, and 3  years was 0.838, 0.849, and 0.859, respectively, 
which were better than those of the clinical factors or risk 
score model alone (Fig. 8E).

Fig. 4  The assessment of glycolysis-related READ prognostic model in READ and COAD patients. A Kaplan–Meier survival analysis on READ patients 
between the high-risk and low-risk groups. B Kaplan–Meier survival analysis on COAD patients between the high-risk and low-risk groups. C AUC 
of the glycolysis-related READ prognostic model in predicting survival in READ patients. D AUC of glycolysis-related READ prognostic model in 
predicting survival in COAD patients
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Fig. 5  The characteristic of glycolysis-related READ prognostic model. A Distribution of risk scores of each READ patient. B Correlation between 
survival time and survival status of each patient. C The expression pattern of TSTA3 and PKP2 between high-risk and low-risk groups. D PCA analysis 
of READ patient based on glycolysis-related READ prognostic model. E t-SNE analysis of READ patient based on glycolysis-related READ prognostic 
model. The dashed line represents the median risk score in READ patients



Page 11 of 17Liu et al. Human Genomics            (2022) 16:5 	

Functional analyses between high‑risk and low‑risk groups 
in patients with rectal cancer
To elucidate the different biological functions or pathways 
that might play potential roles in the high-risk group and 
low-risk group, GO enrichment and KEGG analyses were 
performed using the DEGs (|log2FC| ≥ 0.6, FDR < 0.05) 
between the two groups. As expected, the DEGs were 
enriched in several glycolysis-related molecular func-
tions or pathways, such as oxidative phosphorylation (p 
value < 0.05) (Fig. 9A–D). These results indicated that glyc-
olysis-related molecular functions or pathways were indeed 
different between high-risk group and low-risk group 
according to glycolysis-related READ prognostic model.

Discussion
Cancer metabolism, especially glucose metabolism, has 
drawn great attraction in oncology research during the 
in recent decades [16–18]. Enhanced aerobic glycolysis, 
which serves as a metabolic driver, has been proven to 
promote tumor development and aggressiveness in CRC 
cells, and further results in resistance to treatment [20, 
21]. In our research, we compared glycolysis-related gene 
sets between COAD and READ. Three gene sets, HALL-
MARK_GLYCOLYSIS, REACTOME_GLYCOLYSIS, and 
REACTOME_REGULATION_OF_GLYCOLYSIS_BY_
FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM, 
were significantly enriched in both COAD and READ. We 
also compared glycolysis-related independent prognostic 
genes between COAD and READ. We found that six genes 
including ANKZF1, STC2, SUCLG2P2, P4HA1, GPC1 and 
PCK1 were independent prognostic genes in COAD, while 
TSTA3 and PKP2, were independent prognostic genes in 
READ. These results indicated that COAD might have dif-
ferent glycolysis-related prognostic gene signatures than 
READ. We, respectively, constructed glycolysis-related 
prognostic models in COAD and READ and, respectively, 
assessed the efficiency of each model in COAD and READ. 
We found that the glycolysis-related prognostic model of 
COAD was not appropriate for READ, while glycolysis-
related prognostic model of READ was more appropriate 
for READ than COAD. These results indicated that COAD 
might have many different patterns such as genomic signa-
tures, drug efficacy, and prognosis compared with READ.

We also developed a two-gene signature (TSTA3 and 
PKP2) to predict the prognosis of rectal cancer, which was 
shown to be an independent prognostic indicator through 

multivariate Cox analysis. Subgroup analysis confirmed 
that the READ glycolysis-related prognostic model still 
showed robust effectiveness in the different age, gender, M 
stage, and AJCC stage subgroups. Moreover, a nomogram 
integrating the risk model and clinicopathological factors 
was depicted to provide clinicians with a practical tool for 
predicting the prognosis of rectal cancer patients.

Recent research has revealed that traditional clinico-
pathological factors are inadequate for accurate cancer 
prognosis predictions [13, 14]. With the rapid develop-
ment of high-throughput sequencing and the accumula-
tion of cancer genomic data, molecular signatures based 
on data mining in the public databases have become a 
reality to predict the outcome of cancer patients, dem-
onstrating higher sensitivity and specificity than the 
traditional single genes or markers models [11, 12, 15]. 
Glycolysis-related risk scores have shown excellent per-
formance in predicting prognosis in various solid tumors 
[14, 22–27]. Liu et al. [23] developed a four‑gene signa-
ture (AGRN, AKR1A1, DDIT4, and HMMR) related to 
glycolysis to predict the lung adenocarcinoma patient 
outcomes that showed desirable accuracy. Another four-
gene glycolytic signature (NUP205, NUPL2, PFKFB1, 
and PKM) showed excellent performance in predicting 
the OS of bladder cancer patients [27]. Similarly, Chen 
et al. established a risk score model containing seven gly-
colysis-related genes (PPARGC1A, DLAT, 6PC2, P4HA1, 
STC2, ANKZF1, and GPC1) in their recent study that can 
effectively predict the outcome of colon adenocarcinoma 
[14]. However, the genes identified in the COAD back-
ground in Chen’s research are different from the genes 
identified in our present study, resulting in two differ-
ent risk models, which further validate the mainstream 
view that colon cancer and rectal cancer are two diseases 
[3–5].

Plakophilin-2 (PKP2) was initially identified as a des-
mosomal protein, but further studies have revealed that 
it is localized in the cytoplasm and nucleus as well [28]. 
PKP2 expression is upregulated in many cancers, such 
as lung [29], ovarian [30], glioma [31], and bladder can-
cers [32]. Increased PKP2 expression was also related to 
a malignant phenotype and poor prognosis in some can-
cers [29–32]. Arimoto et  al. found that PKP2 enhanced 
the dimerization of EGFR and activated downstream 
signaling pathways, which further promoted cell prolif-
eration and tumor metastasis [33]. Moreover, PKP2 may 

(See figure on next page.)
Fig. 6  The cox analysis on prognostic model and survival analysis on different clinical features in READ. A Forest plot for the risk score model 
compared with other clinical features in READ patients by univariate analyses. B Forest plot for the risk score model compared with other clinical 
features in READ patients by multivariate analyses. C–H Kaplan–Meier survival analysis for different clinical features, including age (C), gender (D), 
TNM stage (E), T stage (F), N stage (G), and M stage (H), in READ patients
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Fig. 6  (See legend on previous page.)
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function as a feedback inhibitor of Wnt/β-catenin signal-
ing in CRC stromal fibroblasts and regulate Wnt activity 
in CRC cells [34]. Our present study found that PKP2 was 
downregulated in rectal cancer tissues compared with 
the adjacent normal tissues. Low PKP2 expression was 
correlated with a poor prognosis, indicating a distinct 
role of PKP2 in rectal cancer development, which needs 
to be further investigated.

Tissue-specific transplantation antigen P35B 
(TSTA3), also called GDP-L-fucose synthase, is one 
of the two rate-limiting enzymes in the de novo syn-
thesis pathway of GDP-L-fucose [35–37]. Serving as a 
one common glycosylation modification by conjugat-
ing fucose to protein‑ or lipid‑bound oligosaccharides, 
fucosylation is dysregulated in various cancers and is 
related to carcinogenesis, invasion, and metastasis [38, 
39]. The process of fucosylation may provide novel tar-
gets for cancer therapeutics [40]. Recently, Zhang et al. 
[41] found that increased TSTA3 expression could pro-
mote esophageal cancer progression by fucosylation of 
LAMP2 and ERBB2 and could predict a poor prognosis 
[42]. Wang et al. [43] found that knocking out TSTA3 in 
mice could lead to fucosylation deficiency and further 
result in colitis and adenocarcinoma. In contrast, we 
discovered that TSTA3 was upregulated in rectal can-
cer tissues compared to adjacent normal tissues. High 
expression was correlated with a poor prognosis, indi-
cating that TSTA3 may function as a tumor suppressor 
in rectal cancer. Since TSTA3 plays different roles in 
diverse kinds of cancer [42–45], the accurate biologi-
cal function of TSTA3 in rectal cancer remains to be 
elucidated.

The two-gene risk model associated with glycolysis 
demonstrated effective performance in predicting the 
clinical outcomes of patients with rectal cancer. How-
ever, we could not find a large sample database of high-
throughput gene expression READ for validation and 
we found two more than 100 samples colorectal cancer 
(CRC) database with microarray gene expression data-
base and OS information in Gene Expression Omni-
bus (GEO) database for validation. The high-risk group 
had a higher OS rate than that of low-risk group with 
the p value = 0.029 according to GSE39582 database 
(Additional file 1: Fig. S3A). The survival curves of the 
high-risk group and low-risk group crossed with the 

Fig. 7  Hierarchical survival analysis of glycolysis-related READ 
prognostic model in READ. Hierarchical survival analysis on clinical 
features [age (A), gender (B), TNM stage (C), T stage (D), N stage (E), 
and M stage (F).]
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Fig. 8  Establishment and evaluation of a nomogram incorporating prognostic model and clinical features in READ patients. A Construction of 
a nomogram combining risk score with clinicopathological characteristics (age and TNM stage). B–D Calibration plots for the nomogram on 1-, 
2‑, and 3‑year survival probability in patients with rectal cancer. E Time‑dependent ROC curves for the nomogram on 1-, 2‑, and 3‑year survival 
probability in patients with rectal cancer
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p value > 0.05 according to GSE17538 database (Addi-
tional file 1: Fig. S3B). Although the above results were 
inconsistent with the results of READ, we consider that 
the glycolysis-related prognostic model of READ might 
be appropriate for the high-throughput gene expression 
database not for microarray gene expression database 
in READ. In future, with new READ high-throughput 

gene expression database available for public, the gly-
colysis-related prognostic model of READ might be 
validated. Besides, the exact biological functions of the 
predictive genes, PKP2 and TSAT3, remain unclear in 
rectal cancer and need to be elucidated in our subse-
quent studies.

Fig. 9  Functional analyses between high-risk and low-risk groups in READ patients. A, B GO enrichment analysis on DEGs between high-risk and 
low-risk groups. C, D KEGG pathway analysis on DEGs between high-risk and low-risk groups
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Conclusion
Our study compared the glycolysis-related gene sig-
nature between COAD and READ for the first time, 
found that there existed different glycolysis-related 
prognostic genes between COAD and READ, and 
showed that the glycolysis-related prognostic model of 
COAD was not appropriate for READ. Our study iden-
tified two novel glycolysis-related genes (PKP2 and 
TSTA3) associated with the prognosis of rectal cancer 
patients, and further established a risk model based on 
two novel glycolysis-related genes to effectively pre-
dict the prognosis of rectal cancer patients. Our study 
provides insight into the potential role of glycolysis in 
the development of rectal cancer and requires further 
investigation.
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