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Abstract 

Background:  Heart failure (HF) is one of the most common complications of cardiovascular diseases (CVDs) and 
among the leading causes of death in the US. Many other CVDs can lead to increased mortality as well. Investigating 
the genetic epidemiology and susceptibility to CVDs is a central focus of cardiology and biomedical life sciences. Sev-
eral studies have explored expression of key CVD genes specially in HF, yet new targets and biomarkers for early diag-
nosis are still missing to support personalized treatment. Lack of gender-specific cardiac biomarker thresholds in men 
and women may be the reason for CVD underdiagnosis in women, and potentially increased morbidity and mortality 
as a result, or conversely, an overdiagnosis in men. In this context, it is important to analyze the expression and enrich-
ment of genes with associated phenotypes and disease-causing variants among high-risk CVD populations.

Methods:  We performed RNA sequencing focusing on key CVD genes with a great number of genetic associations 
to HF. Peripheral blood samples were collected from a broad age range of adult male and female CVD patients. These 
patients were clinically diagnosed with CVDs and CMS/HCC HF, as well as including cardiomyopathy, hypertension, 
obesity, diabetes, asthma, high cholesterol, hernia, chronic kidney, joint pain, dizziness and giddiness, osteopenia of 
multiple sites, chest pain, osteoarthritis, and other diseases.

Results:  We report RNA-seq driven case–control study to analyze patterns of expression in genes and differentiating 
the pathways, which differ between healthy and diseased patients. Our in-depth gene expression and enrichment 
analysis of RNA-seq data from patients with mostly HF and other CVDs on differentially expressed genes and CVD 
annotated genes revealed 4,885 differentially expressed genes (DEGs) and regulation of 41 genes known for HF and 
23 genes related to other CVDs, with 15 DEGs as significantly expressed including four genes already known (FLNA, 
CST3, LGALS3, and HBA1) for HF and CVDs with the enrichment of many pathways. Furthermore, gender and ethnic 
group specific analysis showed shared and unique genes between the genders, and among different races. Broaden-
ing the scope of the results in clinical settings, we have linked the CVD genes with ICD codes.

Conclusions:  Many pathways were found to be enriched, and gender-specific analysis showed shared and unique 
genes between the genders. Additional testing of these genes may lead to the development of new clinical tools to 
improve diagnosis and prognosis of CVD patients.
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Introduction
Cardiovascular diseases (CVDs) are among the lead-
ing causes of morbidity and mortality in the US [1–3]. 
Among all CVDs, ischemic and nonischemic heart failure 
(HF) and stroke are the most common causes of death [4, 
5]. According to the Centers for Disease Control and Pre-
vention (CDC), a person with a CVD dies every 36 s in 
the US, totaling 655,000 deaths each year [6]. Numerous 
studies have reported that age and gender are the socio-
demographic characteristics most frequently associated 
with CVDs [7–9], yet the molecular underpinnings of 
these findings are not yet clear.

Establishing a deeper understanding of CVDs by inves-
tigating human genetic epidemiology and susceptibility 
to CVDs is a central focus of cardiology and biomedi-
cal life sciences today [10]. Our evolving understand-
ing of CVD has led to the realization that to effectively 
diagnose and treat CVD patients, a precision medicine 
approach is essential [11]. To identify patients during the 
preclinical stages of CVD and provide the most effica-
cious personalized treatment, it is essential to analyze the 
expression of human genes with disease-causing variants, 
along with associated phenotypes among high-risk CVD 
populations, mainly those with hypertension, obesity, 
type 2 diabetes mellitus, asthma, high cholesterol, hernia, 
chronic kidney, joint pain, myalgia, dizziness and giddi-
ness, osteopenia of multiple sites, chest pain, osteoarthri-
tis, and related diseases [12]. The apparent challenge here 
is to identify and quantify the genes that contribute to 
major CVD etiologies specifically HF [13].

Heart diseases like HF happens gradually over 
time  when the muscles of the heart become weak and 
have difficulty pumping enough blood to nourish your 
body’s many cells. HF and most other CVD clinical 
phenotypes exist due to complicated relations between 
genetic and ecological factors [14]. Several recently 
published studies have shown that gene expression 
analysis is a proven method for understanding and dis-
covering novel and sensitive biomarkers of CVDs [15]. 
Gene expression and classification analysis have shown 
strong correlations of age and gender with obstruc-
tive coronary arterial disease (CAD) [16], differentiated 
ischemic and non-ischemic cardiomyopathy conditions 
[17], identified genes related to HF [18], and discovered 
differentially regulated genes linked with recurrent car-
diovascular outcomes in first-time acute myocardial 
infarction (AMI) patients [19]. The susceptibility to heart 
failure depends on complex and heterogeneous genetic 
predisposition [20]. This genetic and therefore heritable 

component has been determined in many HF studies 
[21–24]. These studies clearly demonstrated the presence 
of genetic factors as determinants of heart failure. They 
also showed the relevance of genetic factors as independ-
ent risk factors for heart failure.

In this study, we investigated genes responsible for 
pathophysiological processes in CVDs with a focus on 
HF. In addition, our expression profiling revealed new 
gene-disease associations that may lead to the develop-
ment of new clinical tools to improve diagnosis and prog-
nosis of patients.  RNA sequencing (RNA-seq) analyses 
are used to quantify expressed genes [25]. We performed 
an RNA-seq analysis from peripheral blood of diverse 
CVD patients and focusing on HF and other CVD genes. 
We used gene expression analysis to identify changes in 
mRNA abundance [26] that correlate with CVDs to pre-
cisely stratify, classify, and distinguish gender- and age-
based patient populations to CVD risks and subtypes by 
using genomic phenotypes [27].

Material and methods
Overall study methodology is divided among four major 
steps, (1) CVD sample collection, RNA extraction, and 
high-throughput sequencing, (2) RNA-seq data process-
ing, quality checking, analysis, and visualization, (3) CVD 
gene-disease annotation and phenotyping, and (4) gene 
differential expression and pathway enrichment analysis 
(Fig. 1).

CVD sample collection, RNA extraction, 
and high‑throughput sequencing
Supporting this study, we have developed an efficient data 
management system (PROMIS-LCR) for patient recruit-
ment and consent, and for collecting, storing, and track-
ing of the original and current quantities of biospecimens 
under standardized conditions for preservation of critical 
metabolites. This system has been successfully deployed 
and is operational at the outpatient pavilion (OP) to sup-
port establishment of a biobank and a precision medicine 
initiative (PMI) at UConn Health. Highly heterogeneous 
and complex clinical terminologies have made electronic 
health records (EHRs) and diversified public content 
processing extremely arduous [28]. Addressing this chal-
lenge, we have developed an intelligent and dynamic data 
extract, transform, and loading (ETL) system for effi-
ciently pulling clinical data from different health systems 
(EPIC and NextGen) and academic data models [29]. We 
implemented cutting-edge technologies utilizing artificial 
intelligence (AI) and machine learning (ML) approaches 

Keywords:  Cardiovascular, Disease, Expression, Enrichment, Gene, Heart failure, RNA-seq



Page 3 of 18Ahmed et al. Human Genomics           (2021) 15:67 	

for multimodal data security, aggregation, classifica-
tion, and examine granularities from population studies 
to subgroups stratification within the data continuum 
[28]. We investigated patient’s data centered on medical 
details, symptoms, age, race, gender, and demographics, 
and implemented healthcare data analytics process with 
features to build CVD cohort and from the population 
data [29]. This system, fully integrated with the PROMIS-
LCR system, is tested and operational to efficiently 
extract and link de-identified medical details of the con-
sented CVDs and even other patients participating in the 
PMI study with their collected biospecimens at UConn 
Health.

For high-throughput sequencing, peripheral blood 
was randomly extracted from 61 CVD patients. Table 1 
presents details of all CVD patients (Sample IDs: 1059–
1083) and that includes information about their gender 
(40 male and 21 female), ethnic groups (56 Not Hispanic, 
4 Hispanic, and 1 Decline to Answer), and self-described 
race (42 Whites, 7 Blacks: Blacks or African Americans, 
1 Asian, and 1 Decline to Answer, 2 other and 8 NA). 
These patients were clinically diagnosed with CVDs, and 
Systolic and Diastolic HF (CMS/HCC), including both 
heart failure with preserved ejection fraction (HFpEF) 
and heart failure with reduced ejection fraction (HFrEF). 
Additional reported diagnoses include cardiomyopathy, 

hypertension, obesity, type 2 diabetes mellitus, asthma, 
high cholesterol, hernia, chronic kidney, joint pain, 
myalgia, dizziness and giddiness, osteopenia of multi-
ple sites, chest pain, and osteoarthritis. Built cohort is 
based on diverse individuals aged between 45 and 92. All 
ten healthy (control sample ids 648, 649, 650, 651, 652, 
653, 655, 656, 657, 658) individuals (5 male and 5 female 
patients) had no clinical manifestation of any CVD and 
were aged between 28 and 78. Among control samples, 
three patients are self-described Hispanics (651, 656, 
653), and the rest of the seven were categorized as non-
Hispanic. Nine of them are from White race, and one 
was unknown (651). Further details are attached in the 
Additional file 1: Gender and age-based population data 
classification.

Written informed consent was obtained from all 
subjects. All procedures performed in studies involv-
ing human participants were in accordance with the 
ethical standards of the institutional and with the 1964 
Helsinki declaration and its later amendments or com-
parable ethical standards. All human samples were used 
in accordance with relevant guidelines and regulations, 
and all experimental protocols were approved by Insti-
tutional Review Board (IRB), UConn Health. Samples 
were curated, and all sequencing was done using the Illu-
mina platform. Total RNA was extracted according to the 

Fig. 1  Research methodology divided among four major steps. Steps include, (1) CVD sample collection, RNA extraction, and high-throughput 
sequencing, (2) RNA-seq data processing, quality checking, analysis, and visualization, (3) CVD gene-disease annotation and phenotyping, and (4) 
Gene differential expression and pathway enrichment analysis
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Table 1  Details of CVD sample details

CVD Sample IDs Gender/Sex Age Ethnic groups Race

1059 Male 79 Not_Hispanic White

1068 Male 70 Not_Hispanic NA

1073 Female 89 Not_Hispanic White

1084 Female 69 Hispanic Other

1085 Male 64 Hispanic Other

1086 Male 65 Not_Hispanic Black: Black or African American

1087 Female 69 Not_Hispanic NA

1088 Female 65 Not_Hispanic White

1089 Male 55 Not_Hispanic White

1090 Male 70 Not_Hispanic White

1091 Male 77 Not_Hispanic White

1092 Male 62 Not_Hispanic White

1093 Female 70 Not_Hispanic White

1094 Male 64 Not_Hispanic White

1095 Male 66 Not_Hispanic White

1096 Male 59 Not_Hispanic Black: Black or African American

1097 Female 57 Not_Hispanic White

1098 Male 83 Not_Hispanic NA

1099 Male 67 Not_Hispanic White

1100 Male 81 Not_Hispanic NA

1101 Male 64 Not_Hispanic White

1102 Male 71 Not_Hispanic Black: Black or African American

1103 Male 80 Not_Hispanic White

1104 Male 73 Not_Hispanic White

1105 Female 71 Not_Hispanic White

1106 Male 79 Not_Hispanic NA

1107 Male 84 Not_Hispanic White

1108 Female 57 Not_Hispanic Black: Black or African American

1109 Male 75 Not_Hispanic White

1110 Male 80 Decline Decline to Answer

1111 Female 86 Not_Hispanic White

1112 Male 72 Hispanic White

1113 Male 60 Hispanic White

1114 Female 54 Not_Hispanic Black: Black or African American

1115 Male 67 Not_Hispanic White

1116 Female 63 Not_Hispanic White

1117 Male 66 Not_Hispanic White

1118 Male 88 Not_Hispanic White

1058 Female 72 Not_Hispanic White

1060 Male 58 Not_Hispanic NA

1061 Male 70 Not_Hispanic White

1062 Male 67 Not_Hispanic White

1063 Male 66 Not_Hispanic White

1064 Female 54 Not_Hispanic NA

1065 Female 51 Not_Hispanic White

1066 Male 82 Not_Hispanic White

1067 Male 62 Not_Hispanic White

1069 Female 65 Not_Hispanic White

1070 Male 57 Not_Hispanic White



Page 5 of 18Ahmed et al. Human Genomics           (2021) 15:67 	

manufacturer’s instructions. RNA quality was assessed 
for RNA integrity number. For all samples, RNA integ-
rity number was > 7. An Illumina NovaSeq 6000-S4 was 
used for sequencing. An RNA Sample Preparation kit 
(Illumina, Inc.) was used for the preparation of cDNA 
libraries; cDNA libraries that passed size and purity 
check were retained for the following sequencing. Paired-
end 150 bp short sequences (reads, pool across 2 lanes) 
with 30X coverage were generated for the blood sam-
ples, including the Illumina-compatible library (TruSeq 
Stranded mRNA).

RNA‑seq data processing, quality checking, analysis, 
and visualization
To process and check the quality of RNA-seq data, we 
developed a pipeline with four operating modules: data 
pre-processing; data quality checking; data storage and 
management; and data visualization (Fig.  2). Quality 
control of raw reads was conducted using FastQC [30], 
which showed that all raw reads were qualified for down-
stream analysis. The reads were trimmed using Trim-
momatic [31]. We used SAMtools for sorting sequences 
[32], MarkDuplicates for removing duplicates [33], and 
CollectInsertSizeMetrics by Picard to compute size dis-
tribution and read orientation of paired-end libraries. 
Afterward, the paired-end raw reads were aligned to the 
human reference genome (hg38) using HISAT [34] with 
Bowtie2 [35] software. RNA-seq by expectation maxi-
mization (RSEM) [26] was then applied for quantifica-
tion and identification of identify differentially expressed 
genes (DEGs) by aligning reads to reference de novo 
transcriptome assemblies, based on transcript per mil-
lion mapped reads (TPM). We used TPM as it is the best 
performing normalization method because it increases 

the proportion of variation attributable to biology com-
pared to the raw data [36]. The decide-tests were per-
formed to identify DEGs with Benjamini & Hochberg 
adjustment.  Genes with P < 0.05 were selected as the 
criteria for significant differences (statistical values of all 
the DEGs are available in the Additional file 3: All DEGs 
Expression). Hierarchical clustering of DEGs was per-
formed using the “pheatmap” function of the R/Biocon-
ductor package. Expression analysis was also performed 
to see that the main source of variation is due to bio-
logical effects. This analysis was done on genes with an 
expression level higher than 50 TPM in at least one sam-
ple remained as high confidence genes (expression values 
of all the DEGs are available in the Additional file 5: All 
DEGs Stats 42 Genes). All computational results were 
stored in a designated database, using an in-house pro-
grammed command line data parser. The expression data 
were illustrated using the Gene Variant Visualization 
(GVViZ) environment, another bioinformatics applica-
tion [37] developed in-house for efficient high-volume 
sequence data visualization.

CVD gene‑disease annotation and phenotyping
We have modelled and published a comprehensive 
knowledgebase of annotated disease-gene-variant data 
based on multiple clinical and genomics databases, 
including but not limited to ClinVar, GeneCards, MalaC-
ard, DISEASES, HGMD, Disease Ontology, DiseaseEn-
hancer, DisGeNET, eDGAR, GTR, OMIM, miR2Disease, 
DNetDB, The Cancer Genome Atlas, International Can-
cer Genome Consortium, OMIM, GTR, CNVD, 
Ensembl, GenCode, Novoseek, Swiss-Prot, LncRNA-
Disease, Orphanet, WHO, FDA, Catalogue Of Somatic 
Mutations In Cancer (COSMIC), and Genome-wide 

Table 1  (continued)

CVD Sample IDs Gender/Sex Age Ethnic groups Race

1071 Female 52 Not_Hispanic Asian

1072 Female 91 Not_Hispanic White

1074 Female 81 Not_Hispanic White

1075 Female 59 Not_Hispanic White

1076 Male 45 Not_Hispanic White

1077 Male 73 Not_Hispanic White

1078 Female 72 Not_Hispanic White

1079 Male 92 Not_Hispanic NA

1080 Male 86 Not_Hispanic White

1081 Male 57 Not_Hispanic Black: Black or African American

1082 Female 59 Not_Hispanic Black: Black or African American

1083 Male 85 Not_Hispanic White

This table includes CVD Sample IDs (1059–1083), Gender/Sex (40 Male, and 21 Female), Age, Ethnic Groups (56 Not Hispanic, 4 Hispanic, and 1 Decline to Answer), and 
Race (42 White, 7 Black: Black or African American, 1 Asian, and 1 Decline to Answer, 2 other and 8 NA). NA = Not Available
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Association Studies (GWAS) [27, 38, 39]. We used this 
repository to perform gene-disease annotation for this 
study and found 43 genes associated with HF. They are 
TNF, IL6, ACE, MMP2, NOS3, AGT, EDN1, REN, MYH7, 
AGTR1, AGTR1, NPPA, ADRB2, NR3C2, NR3C2, MME, 
CRP, MYH6, EPO, CST3, EDNRA, AQP2, MYBPC3, 
KNG1, VCL, HOTAIR, CDKN2B-AS1, ANKRD1, ADM, 
AMPD1, PLN, LGALS3, NPPB, ADRB1, UTS2, PIK3C2A, 
NPPC, CORIN, NPR1, LSINCT5, TUSC7, HSPB7, and 
RP11-451G4.2 (Table  2). Twenty-three genes associ-
ated with other CVDs phenotypes were: SLC2A1, FGF2, 
FLNA, HBA1, GJB6, ATP2A2, CD40LG, FGF23, TEK, 
TAC1, DDX41, FADD, ENO2, LEMD3, CD34, TRPV1, 
GLMN, MB, SMUG1, PDPN, CALD1, KANTR, ZBT-
B8OS (Table  3). Additional information about these 
genes is provided in Tables  1 and 2, including names, 
Ensembl ids, categories, diseases, and chromosomes.

Gene differential expression and pathway enrichment 
analysis
To associate cellular functions with the DSGs, Gene Set 
Enrichment Analysis (GSEA) [40] was performed to ver-
ify the differences between comparisons. GSEA was car-
ried out by using the curated gene sets of the Molecular 

Signature Database v7.0. The gene lists of hallmark gene 
sets (H), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway database (C2), and REACTOME path-
way database (C2) were used to run GSEA, following the 
standard procedure described by GSEA user guide. Sig-
nificantly enriched terms with similar descriptions and 
functions were further grouped into distinct biological 
categories (to better reflect the biology in context) and 
top categories were schematically projected on the net-
work of enriched terms.

Results
Cardiovascular disease is the most important cause of 
morbidity and mortality in developed countries, causing 
twice as many deaths as cancer in the USA. The under-
lying molecular pathogenic mechanisms for these disor-
ders are still largely unknown, but gene expression may 
play a central role in the development and progression 
of cardiovascular disease. In this context, we have per-
formed a comprehensive expression study comprising 
of two types of expression analysis between healthy con-
trols and CVD patients diagnosed with HF and other 
cardiovascular phenotypes. We started with a global dif-
ferential gene expression analysis based on TPM count 

Fig. 2  RNA-seq data processing pipeline. Used FastQC for quality checking; Trimmomatic to remove adapters and low-quality sequences; SAMtools 
to sort and index sequences; MarkDuplicates to remove duplicates; CollectInsertSizeMetrics to compute size distribution and read orientation 
of paired-end libraries; HISAT with Bowtie2 to align sequences to the human reference genome; and RSEM to quantify and identify differentially 
expressed genes by aligning reads to reference de novo transcriptome assemblies
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Table 2  List of genes associated with the heart failure diseases

Gene names Ensembl Ids Categories Diseases Chromosomes Regulation 
versus healthy 
controls

TNF ENSG00000232810 Protein Coding Systolic heart failure chr6 Down

IL6 ENSG00000136244 Protein Coding Systolic heart failure chr7 Down

ACE ENSG00000159640 Protein Coding Congestive heart failure
Diastolic heart failure
Systolic heart failure

chr17 Down

MMP2 ENSG00000087245 Protein Coding Diastolic heart failure chr16 Down

NOS3 ENSG00000164867 Protein Coding Diastolic heart failure chr7 Down

AGT​ ENSG00000135744 Protein Coding Diastolic heart failure chr1 Down

EDN1 ENSG00000078401 Protein Coding Congestive heart failure chr6 Down

REN ENSG00000143839 Protein Coding Congestive heart failure chr1 Down

MYH7 ENSG00000092054 Protein Coding Congestive heart failure chr14 Up

AGTR1 ENSG00000144891 Protein Coding Diastolic heart failure chr3 Down

NPPA ENSG00000175206 Protein Coding Congestive heart failure
Diastolic heart failure

chr1 Down

ADRB2 ENSG00000169252 Protein Coding Congestive heart failure chr5 Down

NR3C2 ENSG00000151623 Protein Coding Congestive heart failure
Systolic heart failure

chr4 Down

MME ENSG00000196549 Protein Coding Congestive heart failure chr3 Down

CRP ENSG00000132693 Protein Coding systolic heart failure chr1 Down

MYH6 ENSG00000197616 Protein Coding Congestive heart failure chr14 Down

EPO ENSG00000130427 Protein Coding Congestive heart failure chr7 Down

CST3 ENSG00000101439 Protein Coding Systolic heart failure chr20 Down

EDNRA ENSG00000151617 Protein Coding Congestive heart failure chr4 Down

AQP2 ENSG00000167580 Protein Coding Congestive heart failure chr12 Down

MYBPC3 ENSG00000134571 Protein Coding Diastolic heart failure chr11 Down

KNG1 ENSG00000113889 Protein Coding Congestive heart failure chr3 Down

VCL ENSG00000035403 Protein Coding Congestive heart failure chr10 Down

HOTAIR ENSG00000228630 antisense Congestive heart failure chr12 Down

CDKN2B-AS1 ENSG00000240498 antisense Congestive heart failure chr9 Down

ANKRD1 ENSG00000148677 Protein Coding Diastolic heart failure chr10 Up

ADM ENSG00000148926 Protein Coding Congestive heart failure chr11 Down

AMPD1 ENSG00000116748 Protein Coding Congestive heart failure chr1 Up

PLN ENSG00000198523 Protein Coding Congestive heart failure chr6 Down

LGALS3 ENSG00000131981 Protein Coding Systolic heart failure chr14 Down

NPPB ENSG00000120937 Protein Coding Congestive heart failure
Diastolic heart failure
Systolic heart failure

chr1 Down

ADRB1 ENSG00000043591 Protein Coding Congestive heart failure
Systolic heart failure

chr10 Down

UTS2 ENSG00000049247 Protein Coding Congestive heart failure chr1 Down

PIK3C2A ENSG00000011405 Protein Coding Congestive heart failure chr11 Down

NPPC ENSG00000163273 Protein Coding Congestive heart failure chr2 Up

CORIN ENSG00000145244 Protein Coding Systolic heart failure chr4 Down

NPR1 ENSG00000169418 Protein Coding Congestive heart failure chr1 Up

LSINCT5 ENSG00000281560 lincRNA Congestive heart failure chr5 Down

TUSC7 ENSG00000243197 lincRNA Congestive heart failure chr3 Down

HSPB7 ENSG00000173641 Protein Coding Systolic heart failure chr1 Up

RP11-451G4.2 ENSG00000240045 Protein Coding Heart failure chr3 Down
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for protein genes to identify significantly differentiated 
genes (Fig.  3A). We generated a multidimensional scal-
ing (MDS) [41] plot of biological coefficient of varia-
tion (BCV) [42] to identify biological variation between 
case and control groups (Fig.  3B). There were no out-
liers seen in the MDS plot. We identified 4,712 DEGs 
between the controls and the CVD group (Fig. 3A) which 
can be grouped into two clusters (kmeans row cluster-
ing) (Fig.  3A). Statistical significance of P value < 0.05 
and |log2FC| ≥ 2 showed 42 genes with greater than 
twofold change. Some of these highly significant genes 
have already been reported in multiple CVDs (APOD, 
PIGR, CELSR1, COBLL1, FCRL5, TEAD2, ABCA6, 
COL4A3, CYP4F2, FMOD, GNG8, IGF2R, PEG10, 
RAPGEF3, RASGRF1, SCARNA17, TCF4), while some 

genes (ADAM29, ARHGAP44, CD200, CLEC17A, 
CLNK, CNTNAP1, CNTNAP2, CTC-454I21.3, DMD, 
FAM129C, FAM3C, FCRL1, FCRL2, FCRLA, GPM6A, 
KLHL14, MTRNR2L3, NPIPB5, OSBPL10, PAX5, 
PCDH9, PHYHD1, POU2AF1, RALGPS2, ZNF888) have 
shown a novel expression in CVD. Statistical difference in 
expression for these genes can be seen in the Additional 
file 4: All DEGs Stats. Gene enrichment of all the DEGs 
revealed 190 pathways upregulated in the CVD patients 
and 408 pathways were found to be down-regulated 
(Fig. 3E). Figure 3C shows top 20 up-regulated and down-
regulated pathways in CVD patients. Major up-regulated 
pathways were protein translation and localization, car-
diac muscle contraction, oxidative phosphorylation, 
mitochondrial translation and protein import, electron 

Table 3  List of genes associated with the cardiovascular diseases

Gene names Ensembl Ids Categories Diseases Chromosomes Regulation 
versus healthy 
controls

SLC2A1 ENSG00000117394 Protein Coding Cardiovascular organ benign neoplasm chr1 Down

FGF2 ENSG00000138685 Protein Coding Cardiovascular organ benign neoplasm chr4 Down

FLNA ENSG00000196924 Protein Coding Cardiovascular organ benign neoplasm chrX Down

HBA1 ENSG00000206172 Protein Coding Cardiovascular organ benign neoplasm chr16 Up

GJB6 ENSG00000121742 Protein Coding Cardiovascular organ benign neoplasm chr13 Down

ATP2A2 ENSG00000174437 Protein Coding Cardiovascular organ benign neoplasm chr12 Down

CD40LG ENSG00000102245 Protein Coding Cardiovascular syphilis chrX Down

FGF23 ENSG00000118972 Protein Coding cardiovascular organ benign neoplasm chr12 Down

TEK ENSG00000120156 Protein Coding Cardiovascular organ benign neoplasm chr9 Down

TAC1 ENSG00000006128 Protein Coding Cardiovascular organ benign neoplasm chr7 Down

DDX41 ENSG00000183258 Protein Coding Cardiovascular syphilis chr5 Down

FADD ENSG00000168040 Protein Coding Infections recurrent with encephalopathy hepatic 
dysfunction and cardiovascular malformations

chr11 Down

ENO2 ENSG00000111674 Protein Coding Cardiovascular organ benign neoplasm chr12 Down

LEMD3 ENSG00000174106 Protein Coding cardiovascular organ benign neoplasm chr12 Down

CD34 ENSG00000174059 Protein Coding cardiovascular organ benign neoplasm chr1 Down

TRPV1 ENSG00000196689 Protein Coding cardiovascular organ benign neoplasm chr17 Down

GLMN ENSG00000174842 Protein Coding cardiovascular organ benign neoplasm chr1 Down

MB ENSG00000198125 Protein Coding Cardiovascular organ benign neoplasm chr22 Up

SMUG1 ENSG00000123415 Protein Coding Cardiovascular syphilis chr12 Up

PDPN ENSG00000162493 Protein Coding Cardiovascular organ benign neoplasm chr1 Down

CALD1 ENSG00000122786 Protein Coding Cardiovascular organ benign neoplasm chr7 Down

KANTR ENSG00000232593 Protein Coding Cardiovascular organ benign neoplasm chrX Down

ZBTB8OS ENSG00000176261 Protein Coding Cardiovascular organ benign neoplasm chr1 Down

Fig. 3  Differentially regulated gene expression and enrichment. A Differential gene expression of protein coding genes with two major clusters. 
B MDS plot showing biological distance between case–control samples based on BCV. C Top 20 enriched pathways showing up-regulation and 
down-regulation in CVD based on their normalized enrichment scores (NES). D Differential gene expression of annotated CVD genes. E Gene 
enrichment heatmap of differentially expressed genes

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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transport and citric acid cycle. The pathways involved 
in down-regulation included FGFR1, FGFR2, FGFR3, 
EGFR, TGF beta, MET mediated signaling, estrogen-
dependent gene expression, NR1H2, NR1H3 medi-
ated cholesterol transport and efflux, and regulation of 
white adipocytes differentiation. By default, gene sets 
are ordered by normalized enrichment score (NES). 
More details on all the enriched pathways are available 
in the Additional file 6: CVD Enrichments. From the list 
of annotated CVD genes, 15 genes showed a differenti-
ated expression (Fig. 3D). Among them, 7 are HF genes 
(CST3, LGALS3, MME, NR3C2, PIK3C2A, TNF, VCL), 
and 8 are other CVD genes (ATP2A2, FADD, FLNA, 
HBA1, LEMD3, SLC2A1, SMUG1, ZBTB8OS). Enrich-
ment of these genes showed down-regulation was seen in 
NR3C2, LEMD3, PIK3C2A, FLNA, MME, ATP2A2, and 
VCL, while a pattern of upregulation was observed in 
FADD, SLC2A1, TNF, ZBTB8OS, HBA1, LGALS3, CST3, 
and SMUG1, suggesting that intrinsic biological differ-
ences account for, at least, part of CVD.

The second type of analysis was based on expression 
analysis to compare expression of all 48 CVD genes 
between CVD patients and healthy controls. We used our 
in-house developed GVViZ platform to perform expres-
sion analysis using TPM counts of the protein coding 
genes computed from RNA-seq data. Furthermore, the 
expression data were linked to gene-disease annotation 

databases [27, 38, 39] to classify and differentiate between 
CVD and other disease-based functional and non-func-
tional genes. A heatmap of all the CVD genes was con-
structed (Fig.  4) and annotated with their associated 
clinical CVD phenotype. In GVViZ-generated Fig. 4, the 
X-axis signifies samples (healthy ids: 648, 649, 650, 651, 
652, 653, 655, 656, 657, 658, and CVD ids: 1058–1118), 
the right Y-axis shows genes, and the left Y-axis presents 
genes associated with the CVDs. There were apparent 
differences in the filtered expression counts for healthy 
controls and CVD patients mapped to visualize the vari-
ations across the cohort. The analysis showed clear sep-
aration of a subset of CVD patients with significantly 
variable expression for a cluster of genes (details attached 
in the Additional file 7: Original Raw Data).

To systematically inspect gene expression in this data-
set, CVD patients were mainly stratified into condi-
tion, control, and gender for further analysis (Figs.  5 
and 6). With a focus on HF and all other CVDs grouped 
together, we analyzed the expression of all protein coding 
genes (Fig. 5A), and only highly expressed protein-coding 
genes (Fig.  5B) related to HF disease, as well as expres-
sion analysis of protein coding genes (Fig. 5C), and only 
highly expressed protein coding genes (Fig. 5D) related to 
other CVDs. In GVViZ-generated Fig. 5, the X-axis signi-
fies samples (healthy patient ids 648, 649, 650, 651, 652, 
653, 655, 656, 657, 658; CVD patient ids 1058–1118), and 

Fig. 4  Gene expression analysis of all CVD genes. Genes-disease heatmap for the expression analysis of CVDs among all diseased and healthy 
control patients. The X-axis signifies samples (healthy ids: 648, 650, 651, 652, 653, 655, 656, and CVD ids: 1058–1118), the right Y-axis shows genes, 
and the left Y-axis presents genes associated with the CVDs
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the Y-axis shows genes associated with HF (Fig.  5A, B) 
and CVDs (Fig. 5C, D).

During this disease stratification (Fig.  5), we found 
patterns that significantly differentiate the HF and CVD 
groups from the healthy control group. Three clusters 
were identified in the HF expression analysis, which 
showed altered expression between the condition and the 
control groups (Fig. 5A). The first cluster consisted of five 
genes (ADRB2, TNF, ADM, MME, and CST3), the sec-
ond cluster included three genes (IL6, MYBPC3, NPPA), 
and the third cluster contained seven genes (PIK3C2A, 
EDN1, NR3C2, NMP2, ACE, NOS3, and CORIN). Among 
these three clusters, all HF genes showed low expression 
compared to the healthy control group, indicating their 
down regulation. However, four HF protein-coding genes 
(LGALS3, CST3, MME, and ADM) showed high expres-
sion in one or more patients (Fig. 5B).

Expression analysis of genes accounting for other 
CVDs showed four clusters between healthy and disease 

groups (Fig.  5C). The first cluster included nine genes 
(TEK, GJB6, CD34, ENO2, CALD1, LEMD3, GLMN, 
ATP2A2, and TRPV1), the second cluster showed four 
genes (KANTR, CD40LG, ZBTB8OS, and DDX41), 
the third cluster consisted of three genes (SLC2A1, 
FADD, and FLNA), and the fourth cluster had only one 
gene (HBA1). Genes in the first cluster had over 80% of 
patients showing low expression in comparison with the 
healthy control group, indicating their down regulation. 
However, genes in the second and third clusters had over 
50% patients with low expression compared to the con-
trol group. On the contrary, HBA1 showed high expres-
sion during analysis. Other CVD protein-coding genes 
that had the highest expressed were HBA1, FLNA, and 
DDX41 (Fig. 5D).

To further classify the groups, we performed gender-
based gene expression analysis of HF and other CVD 
genes (Fig.  6). We compared gender-matched case and 
control groups (male CVD vs male controls, and female 

Fig. 5  Gene expression analysis of HF and other CVD genes. A Expression analysis of protein-coding genes in HF. B Highly expressed 
protein-coding genes related to HF disease. C Expression analysis of protein-coding genes in other CVD genes. D Highly expressed protein-coding 
genes related to other CVDs

(See figure on next page.)
Fig. 6  Gender-based gene expression analysis of HF and other CVD genes. A Protein-coding genes related to HF in males, B Highly expressed 
protein-coding genes related to HF in males, C Protein-coding genes related to CVD in males, D Highly expressed protein-coding genes related to 
CVD in males. E Protein-coding genes related to HF in females, F Highly expressed protein-coding genes related to HF in females, G Protein-coding 
genes related to other CVD sin females, and H highly expressed protein-coding genes related to other CVDs in females
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CVD vs female controls). The results illustrated for HF 
protein-coding genes in the male group (Fig. 6A, B) with 
genes showing a relatively low expression in comparison 
with the control group (ADM, MME, VCL, MYBPC3, 
IL6, MMP2, ACE, NR3C2, EDN1, and PIK3C2A). Some 
genes showed a rise in expression in comparison with 
the control group (NPR1, ANKRD1, NPPC, and UTS2). 
Looking at the HF protein-coding genes in the female 
group (Fig. 6E, F), gene LGALS3 was found to be highly 
regulated among diseased samples in comparison with 
healthy controls, whereas some genes showed a down 
regulated expression (ADM, MME, ADRB2, TNF, VCL, 
MYBPC3, MYH7, HDPB7, MMP2, NPR1, and EDN1). 
Interestingly similar protein-coding genes related to HF 
were found to be highly expressed in both males and 
females (CST3, LGALS3, MME). However, ADM was 
only found in males.

Likewise, gender-based gene expression analysis of 
other CVD genes revealed altered expression in the male 
group (Fig. 6C, D). We identified several CVD genes with 
low expression in the male cohort (ELNA, FADD, DDX41, 
CD34, SMUG1, GJB6, TEK, TRPV1, ATP2A2, GLMN, 
LEMD3, CALD1, ENO2, and FGF2). In the female group, 
we also observed low expression in CVD genes (FLNA, 
FADD, SLC2A1, CD40LG, LEMD3, DDX41, ENO2, 
ATP2A2, KANTR, MB, GLMN, TRPV1, CALD1, CD34, 
GJB6, TEK, and FGF2) (Fig.  6G, H). HBA1, FLNA, and 
DDX41 were found as the highly expressed protein-cod-
ing CVD genes in both gender groups, and ENO2 was the 
only highly expressed gene in the female group.

We investigated HF and other CVD associated pro-
tein coding genes and their expression levels among 
difference races (Fig.  7). We observed MME, CST3 and 
LGALS3 HF genes with high expression among White 
Americans (Fig.  7A), Blacks/African Blacks (Fig.  7B), 
and all other races (Fig.  7C). When ADM was only 
located within White Americans. We commonly found 
DDX41, FLNA and HB1 CVD genes with high expression 
among white Americans (Fig. 7D), Blacks/African Blacks 
(Fig. 7E), and all other races (Fig. 7F). However, we have 
also presented all differentially expressed HF and other 
CVD genes among these all races in Fig. 7. High resolu-
tion figures are attached in Additional file 2. To incorpo-
rate produced results in clinical settings, and to get given 
recommendations back into EHRs, we have linked HF 
and other CVD genes (Ensembl) with the International 
Classification of Disease (ICD) codes (Table 4).

Discussion
Over the past few years, genomic-sequencing technolo-
gies have emerged to improve the clinical diagnosis of 
genetic disorders and continuing to expand the poten-
tial of basic sciences in developing biological insights 

of human genetic variations and their biologic con-
sequences [43]. Several clinically established cardio-
vascular circulating biomarkers are measured to help 
diagnose, stratify risk, and monitor people with sus-
pected CVDs. Use of one or more of these biomarkers 
can help physicians identify a heart condition and ini-
tiate appropriate therapy, as well as follow the course 
of disease. CVD presents differently in women and men 
both symptomatically and biochemically [44]. How-
ever, some studies have failed to detect a heart condi-
tion in women with elevated death rates [45]. Lack of 
gender-specific cardiac biomarker thresholds in men 
and women may be the reason for CVD underdiagno-
sis in women, and potentially increased morbidity and 
mortality as a result, or conversely, an overdiagnosis in 
men.

Here, we report a peripheral blood gene expression 
analysis focused on HF- and CVD genes to identify 
gender-specific differences in patients aged between 
45 and 95 years old. Our major findings include disease 
specific up- and down-regulated differentially expressed 
protein-coding genes in HF and CVDs and categorized 
their major signaling pathways involved in disease physi-
ology. This analysis also revealed 25 novel gene expres-
sion in CVD patients. Our results on gender-specific 
differences in expression of protein-coding genes related 
to HF and other CVDs show that it is important to sys-
tematically investigate gender-differences in high-impact 
genes in HF and CVDs [46, 47]. We found differentially 
altered expression of FLNA, CST3, LGALS3, and HBA1, 
potentially responsible for HF and other CVDs in both 
male and female populations. FLNA is a gene known for 
CVDs, as mutations in FLNA can lead to cardiological 
phenotypes with aortic or mitral regurgitation [48]. High 
expression and mutations in the CST3 (Cystatin C) gene 
have been reported in systolic HF, ischemic stroke, and 
CAD [49, 50]. The LGALS3 gene encodes the galectin-3 
(35-kDa) protein, and single nucleotide polymorphisms 
(SNPs) and promoter-regulated expression of LGALS3 
are considered potential candidates that cause CVDs, 
especially CAD, dilated cardiomyopathy, and HF [51–54]. 
The HBA1 (glycated hemoglobin A1c) gene (chromo-
some 16) is considered a prognostic marker responsible 
for the increased cardiovascular mortality risk in age- 
and gender-classified populations [55, 56]. Mutations in 
HBA1 can cause myocardial infarction, stroke, coronary 
heart disease, and HF [56]. The differential expression of 
ENO2 (Enolase 2) gene in CVDs also highlighted gender-
specific (female) alterations, which has been reported in 
other conditions [57].

RNA-seq driven gene expression analysis is an advance-
ment in the field clinical genomics to analyze chromatin 
and patterns of expression in genes and differentiating 
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Fig. 7  Race-based gene expression analysis of HF and other CVD genes. All and highly expressed protein-coding genes related to HF in 
self-described Whites (A), Blacks/African Americans (B), and all other races (C). All and highly expressed protein-coding genes related to other CVDs 
in Whites (D), Blacks/African Americans (E), and all other races (F)
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the pathways, which differ between healthy and diseased 
people [43]. Our study aimed to investigate the clinical 
significance of gene expression in HF and CVDs using 
RNA-seq data. We analyzed the differences between 
healthy and diseased states to understand the pathol-
ogy of disease [58]. The risk for and the course of heart 
failure also depends on genomic variants and mutations 
underlying the so‐called genetic predisposition. Several 
studies have demonstrated that only about half of all 
DNA genetic variants are detectable by RNA sequenc-
ing of human tissue and cell lines [59–61]. However, this 
approach has some potential limitations. Accurate cap-
ture of DNA variants using the RNA-seq data requires 
high coverage and sufficient samples per population as 
it has already been tested in cancer [62, 63], which we 
expect will be mitigated by generating whole genome 
sequencing (WGS) data to perform variant analysis of the 
genes responsible for HF (Table 2) and CVDs (Table 3). 
Nonetheless, with a need to expand the cohort of healthy 
controls to investigate DEGs with significantly regulated 
expression and increase the power to substantiate asso-
ciation with related variables in the CVD populations will 
help to scale down to clinically important genetic varia-
tions. Also, PCR validation of the differentially regulated 
genes will add prognostic value to the study and consoli-
date the role of specific genes as important biomarkers 

Table 4  List of heart failure (HF) and other CVD genes linked to 
ICD codes

Genes Diseases Ensembl Ids ICD 10 codes

SLC2A1 CVD ENSG00000117394 D15.1

FGF2 CVD ENSG00000138685 D15.1

FLNA CVD ENSG00000196924 D15.1

HBA1 CVD ENSG00000206172 D15.1

GJB6 CVD ENSG00000121742 D15.1

ATP2A2 CVD ENSG00000174437 D15.1

CD40LG CVD ENSG00000102245 A52.00

FGF23 CVD ENSG00000118972 D15.1

TEK CVD ENSG00000120156 D15.1

TAC1 CVD ENSG00000006128 D15.1

DDX41 CVD ENSG00000183258 A52.00

FADD CVD ENSG00000168040 D53.0

ENO2 CVD ENSG00000111674 D15.1

LEMD3 CVD ENSG00000174106 D15.1

CD34 CVD ENSG00000174059 D15.1

TRPV1 CVD ENSG00000196689 D15.1

GLMN CVD ENSG00000174842 D15.1

MB CVD ENSG00000198125 D15.1

SMUG1 CVD ENSG00000123415 A52.00

PDPN CVD ENSG00000162493 D15.1

CALD1 CVD ENSG00000122786 D15.1

KANTR CVD ENSG00000232593 D15.1

ZBTB8OS CVD ENSG00000176261 D15.1

TNF HF ENSG00000232810 I50.20

IL6 HF ENSG00000136244 I50.20

ACE HF ENSG00000159640 I50.9

ACE HF ENSG00000159640 I50.3

ACE HF ENSG00000159640 I50.20

MMP2 HF ENSG00000087245 I50.3

NOS3 HF ENSG00000164867 I50.3

AGT​ HF ENSG00000135744 I50.3

EDN1 HF ENSG00000078401 I50.9

REN HF ENSG00000143839 I50.9

MYH7 HF ENSG00000092054 I50.9

AGTR1 HF ENSG00000144891 I50.3

AGTR1 HF ENSG00000144891 I50.9

NPPA HF ENSG00000175206 I50.9

ADRB2 HF ENSG00000169252 I50.9

NR3C2 HF ENSG00000151623 I50.9

NR3C2 HF ENSG00000151623 I50.20

MME HF ENSG00000196549 I50.9

CRP HF ENSG00000132693 I50.20

MYH6 HF ENSG00000197616 I50.9

EPO HF ENSG00000130427 I50.9

CST3 HF ENSG00000101439 I50.20

EDNRA HF ENSG00000151617 I50.9

AQP2 HF ENSG00000167580 I50.9

MYBPC3 HF ENSG00000134571 I50.3

KNG1 HF ENSG00000113889 I50.9

Table 4  (continued)

Genes Diseases Ensembl Ids ICD 10 codes

VCL HF ENSG00000035403 I50.9

HOTAIR HF ENSG00000228630 I50.9

CDKN2B-AS1 HF ENSG00000240498 I50.9

ANKRD1 HF ENSG00000148677 I50.3

ADM HF ENSG00000148926 I50.9

AMPD1 HF ENSG00000116748 I50.9

PLN HF ENSG00000198523 I50.9

LGALS3 HF ENSG00000131981 I50.20

NPPB HF ENSG00000120937 I50.9

NPPB HF ENSG00000120937 I50.3

NPPB HF ENSG00000120937 I50.20

ADRB1 HF ENSG00000043591 I50.9

ADRB1 HF ENSG00000043591 I50.20

UTS2 HF ENSG00000049247 I50.9

PIK3C2A HF ENSG00000011405 I50.9

NPPC HF ENSG00000163273 I50.9

CORIN HF ENSG00000145244 I50.20

NPR1 HF ENSG00000169418 I50.9

LSINCT5 HF ENSG00000281560 I50.9

TUSC7 HF ENSG00000243197 I50.9

HSPB7 HF ENSG00000173641 I50.20

RP11-451G4.2 HF ENSG00000240045 I50.9
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in HF. Our future plans involve application of AI and 
ML techniques [28] to advance investigating correlation 
and overlapping of reported diagnoses of HF and CVD 
patients in clinical data. Finally, assessment of genotype 
and phenotype associations to find potentially high-risk 
indistinct results for patient care from highly regulated 
genes and disease-causing variants [11].

Conclusion
Our analysis identified four altered expression of HF- 
and other CVD genes (FLNA, CST3, LGALS3, and 
HBA1) with gender differences in middle-aged to frail 
patients and revealed differential regulation of 41 genes 
related to HF and 23 genes related to other CVDs. Fur-
thermore, many pathways were found to be enriched, 
and gender-specific analysis showed shared and unique 
genes between the genders. Additional testing of these 
genes may lead to the development of new clinical tools 
to improve diagnosis and prognosis of CVD patients.
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