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Abstract 

Background:  Nowadays we are observing an explosion of gene expression data with phenotypes. It enables us 
to accurately identify genes responsible for certain medical condition as well as classify them for drug target. Like 
any other phenotype data in medical domain, gene expression data with phenotypes also suffer from being a very 
underdetermined system. In a very large set of features but a very small sample size domain (e.g. DNA microarray, 
RNA-seq data, GWAS data, etc.), it is often reported that several contrasting feature subsets may yield near equally 
optimal results. This phenomenon is known as instability. Considering these facts, we have developed a robust and 
stable supervised gene selection algorithm to select a set of robust and stable genes having a better prediction ability 
from the gene expression datasets with phenotypes. Stability and robustness is ensured by class and instance level 
perturbations, respectively.

Results:  We have performed rigorous experimental evaluations using 10 real gene expression microarray datasets 
with phenotypes. They reveal that our algorithm outperforms the state-of-the-art algorithms with respect to stability 
and classification accuracy. We have also performed biological enrichment analysis based on gene ontology-biologi-
cal processes (GO-BP) terms, disease ontology (DO) terms, and biological pathways.

Conclusions:  It is indisputable from the results of the performance evaluations that our proposed method is indeed 
an effective and efficient supervised gene selection algorithm.

Keywords:  Robust and Stable Gene Selection Algorithm (RSGSA), Symmetric Uncertainty (SU), Gain ratio (GR), 
Support vector machine-recursive feature elimination (SVM-RFE), Linear Support Vector Machine (LSVM)
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Background
Gene expression is a biochemical process where the 
genetic code preserved in a gene is decoded to form a 
specific protein and it decisively manifests an organ-
ism’s phenotypes (i.e., observable traits, such as presence 
of a disease, height, etc.). Therefore, regulation of gene 
expression is critical to an organism’s development. In 
the field of molecular biology, gene expression profiling 

is the measurement of the activity of thousands of genes 
simultaneously to spawn a global picture of cellular func-
tions. Several transcriptomics technologies have been 
developed to produce necessary data to analyze and 
interpret. For instance, DNA microarrays measure the 
relative activity of previously identified target genes. 
Sequence based techniques, such as RNA Sequenc-
ing (RNA-seq), provide information on the sequences 
of genes in addition to their expression levels. RNA-seq 
based on next-generation sequencing (NGS) technolo-
gies enables transcriptome analyses of an entire genome 
at a very high level of resolution. These procedures stated 
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above are not only very cost effective but also can be 
done in a laboratory environment.

As the quality of genome sequences and the methods 
for identifying protein-coding genes improved [1], the 
count of recognized protein-coding genes dropped to 
19,000–20,000 [2]. However, a complete understanding 
of the role played by genes expressing regulatory RNAs 
that do not encode proteins has raised the total number 
of genes to at least 46,831 [3] in addition to another set 
of 2300 micro-RNA genes [4]. Since the number of sam-
ples varies from a few hundreds to a few thousands, gene 
selection is particularly challenging in a very underde-
termined system as the system can have many equally 
important solutions. The algorithm of choice may select 
a number of random genes instead of the real set of dis-
criminating genes. Moreover, traditional statistical meth-
ods [5] are designed to analyze susceptibility of genes 
from gene expression data with phenotype by consid-
ering only a single gene at a time. On the contrary, it is 
proven that multiple genes act together to give rise to 
many common diseases. There are numerous challenges 
in designing and analyzing joint effects of multiple differ-
entially expressed genes. Nowadays with next generation 
sequencing methods (e.g., RNA-seq, CAGE, etc.), specific 
transcript expression can be identified. The total number 
of human transcripts with protein-coding potential is 
estimated to be at least 204,950 [6]. As stated earlier, the 
expressions of those transcripts are measured from not 
more than several thousands of individuals.

Although machine learning algorithms also suffer from 
very underdetermined systems, ensemble techniques can 
be employed in the context of supervised gene selection 
domain. In statistics and machine learning, ensemble 
learning is a machine learning technique where multiple 
learners are trained to solve the same problem. In con-
trast to ordinary machine learning approaches which try 
to learn one hypothesis from the training data, ensemble 
methods try to construct a set of hypotheses and com-
bine them to use. We can obtain a better predictive per-
formance by combining multiple learning algorithms 
instead of employing only one learner [7]. Specifically, 
generalization ability of an ensemble is usually much 
stronger than that of a single learner [8]. In this article, 
we have proposed an ensemble supervised gene selection 
algorithm dubbed as “Robust and Stable Gene Selection 
Algorithm” (RSGSA, in short) that is stable and robust 
with a better prediction ability compared to other state-
of-the-art algorithms in this domain.

Related works
Feature selection is the problem of identifying a sub-
set of the most relevant features in the context of model 
construction. If the number of features is n, the total 

number of candidate subsets will be 2n . An exhaustive 
search strategy searches through all the 2n feature subsets 
to find an optimal one. Clearly, this may not be feasible 
in practice [9]. A number of heuristic search strategies 
have been introduced to overcome this problem. In for-
ward selection strategy, features are added one at a time. 
In backward selection the least important feature is 
removed based on some evaluation criterion. Random 
search strategy randomly adds or removes features to 
avoid being trapped in a local maximum.

Depending on the type of data, feature selection can 
be classified as supervised, semi-supervised, and unsu-
pervised. A data instance (e.g., a patient potentially hav-
ing cancer) is characterized by a number of independent 
variables (i.e., features), such as tumor markers. It may 
also have a response variable (often called a label), e.g., 
whether the patient has a benign or a malignant tumor. If 
all the data instances in the dataset have known response 
values, the process of feature selection is called “super-
vised.” Supervised feature selection techniques can be 
broadly classified into 3 categories: (1) wrapper, (2) filter, 
and (3) embedded. Next we illustrate each of the para-
digms in brief.

Wrapper
In a wrapper method the classification or prediction 
accuracy of an inductive learning algorithm of interest is 
used for evaluation of the generated subset. For each gen-
erated feature subset, wrappers evaluate its accuracy by 
applying the learning algorithm using the features resid-
ing in the subset. Although it is a computationally expen-
sive procedure, wrappers can find the subsets from the 
feature space with a high accuracy [9]. Notable examples 
include but not limited to evolutionary algorithms [10], 
simulated annealing [11], and randomized search [12].

Filter
Filter methods are computationally more efficient than 
wrapper methods. They evaluate the accuracy of a subset 
of features using objective criteria that can be assessed 
very quickly. Common objective criteria include mutual 
information, Pearson product-moment correlation coeffi-
cient, and the inter/intra class distance. Though filters are 
computationally more efficient than wrappers, generally 
they produce a less discriminating feature subset. Some 
notable methods include symmetric uncertainty (SU) 
[13], gain ratio (GR) [14], Kullback-Leibler divergence 
measure (KLD) [15], and RELIEF [16].

Embedded
Embedded methods combine the qualities of filter and 
wrapper methods. It’s implemented by the learning 
algorithms that have their own built-in feature selection 
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methods. Some of the most popular examples of these 
methods are linear support vector machine (LSVM) 
[17], random forest (RF) [18], least absolute shrinkage 
and selection operator (LASSO) [19], and ridge regres-
sion [20] having inbuilt penalization functions to reduce 
overfitting.

Results
We have performed rigorous experimental evaluations 
to manifest the efficacy of our proposed method. They 
reveal that RSGSA outperforms the state-of-the-art algo-
rithms in terms of stability and classification accuracy.

Datasets
To demonstrate the effectiveness of our algorithm 
RSGSA, we have used 10 real microarray gene expression 
datasets (please, see Table 1). Details about the datasets 
can be found in [21]. It is to be noted that our algorithm 
works on any kind of gene expression datasets with phe-
notypes, such as RNA-Seq data.

Experimental setup
All the experiments were done on an Intel Westmere 
compute node with 12 Intel Xeon X5650 Westmere cores 
and 48 GB of RAM. The operating system running was 
Red Hat Enterprise Linux Server release 5.7 (Tikanga). 
The algorithm is written in standard Java programming 
language. Java source code is compiled and run by Java 
Virtual Machine (JVM) 1.8.0.

Outcome
We have measured the competence of our proposed 
algorithm using several performance evaluation met-
rics, namely Jaccard Index, Informedness, and Gain. 
Please, see the Methods section for more details. 
Five feature selection algorithms, namely symmet-
ric uncertainty (SU), gain ratio (GR), Kullback-Leibler 

divergence (KLD), RELIEF, and SVM-RFE were used to 
evaluate the performance of our algorithm (RSGSA). 
We have also employed random forest (RF) based 
attribute evaluation method but we are not reporting 
its consistently poor performance over all the data-
sets. Let A and D denote a specific algorithm and a 
specific dataset, respectively. For each dataset D, we 
execute each algorithm A 10× by randomly choosing 
80% samples from D with replacement each time. After 
each execution of A, we record the top X genes where 
X = {50, 100, 150, 200} . We then compute pair-wise Jac-
card indices for each of X genes and take the average 
over all such pair-wise indices. The procedure was done 
for all the datasets by running each method A. Now 
consider an illustrative example. As we execute algo-
rithm A 10× , we get 10 lists for each of top x ∈ X  genes. 
For example, we will get 10 lists for top 50 genes, 10 
lists for top 100 genes, etc. We then compute pair-wise 
Jaccard indices for each top x ∈ X  genes in the corre-
sponding 10 lists of genes and we have 10×(10−1)

2
= 45 

such Jaccard indices. Finally, we take the average over 
all such Jaccard indices for each of the top x ∈ X  genes.

In a similar fashion, we compute the classification 
accuracy (i.e. informedness) by taking the top X genes 
selected by the algorithms. As stated above, the algo-
rithm of interest A ran each time on a slightly differ-
ent dataset by choosing 80% samples with replacement 
from D. The procedure is repeated 10× . So, at the end 
we will get 10 lists of genes from each top x ∈ X  genes. 
For each list of genes containing top x genes, we extract 
dataset D′ containing only top x ∈ X  genes and their 
corresponding expression values across the samples. 
We execute classifier LSVM on each dataset D′ con-
taining only top x ∈ X  genes. After each execution of 
LSVM, we record classification accuracy (i.e. informed-
ness) for top x ∈ X  genes where X = {50, 100, 150, 200} . 
We then compute classification accuracy by averaging 
over all such accuracy for each of the top x ∈ X  genes. 
The classification accuracy (i.e., informedness) is meas-
ured using 10-fold cross validation. Assume that D′ is 
a matrix where each row refers to a sample (i.e., indi-
viduals) and each column contains the gene expres-
sion value of a particular gene from the top X genes. In 
10-fold cross-validation, the original sample ( D′ ) is ran-
domly partitioned into 10 equal sized subsamples. Of 
the 10 subsamples, a single subsample is retained as the 
validation data for testing the model, and the remaining 
9 subsamples are used as training data. So, the cross-
validation process is then repeated 10 times in total, 
with each of the 10 subsamples used exactly once as the 
validation data. The 10 results (i.e. informedness) can 
then be averaged to produce a single estimation. Next 
we discuss the performance evaluations in detail.

Table 1  Datasets used for gene selection

Dataset Name # of Genes # of Instances # of classes

D1 Colon tumor 2000 60 2

D2 Central nervous 
system

7129 60 2

D3 ALL-AML 7129 72 2

D4 Breast cancer 24,481 97 2

D5 Ovarian cancer 15,154 253 2

D6 ALL-AML 7129 72 3

D7 ALL-AML 7129 72 4

D8 Lung cancer 12,533 181 3

D9 MLL 12,581 72 3

D10 SRBCT 2308 83 4
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Gene selection for binary classes
Let us first consider the performance evaluations on 
binary datasets (D1-D5). In terms of Jaccard index 
RSGSA outperforms the other algorithms in all the 
datasets excepting D5. Likewise, RSGSA shows a bet-
ter classification accuracy over the other algorithms in 
all the datasets excepting D4. If we take an average over 
all the datasets D1-D5, RSGSA outplays the other algo-
rithms of interest in terms of both classification stability 
and accuracy. Please see Table 2, Fig. 1a and b for more 
details. As noticeable from the performance evaluations, 
SVM-RFE is the closest competitor of RSGSA. Here 

we define improvement as the average gain over all the 
datasets with respect to a performance metric. RSGSA’s 
improvement over SVM-RFE ranges from 0.04-0.07 (i.e. 
4%-7%) with respect to classification accuracy. In stabil-
ity measure the average gain over SVM-RFE ranges from 
0.26-0.48 (26%-48%). Please, see Fig. 2a and b for visual 
comparisons.

To demonstrate the stability of accuracy across a set 
of classifiers (e.g., linear SVM (LSVM), random forest 
(RF), and k-nearest neighborhood (KNN)), we consid-
ered D1 dataset and computed classification accuracy 
over the top X genes using 10-fold cross validation. It is 
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evident from Fig. 3 that all the classifiers perform equally 
well with respect to RSGSA’s selected top X genes. It fur-
ther demonstrates the efficacy of our proposed method. 
Please see Additional file 1: Table 5  for evaluation details 
on all the 2-class datasets (i.e. D1-D5).

Gene selection for multi classes
Let us now consider the performance evaluations on 
multi-class datasets (D6-D10). RSGSA outperforms all 
the algorithms of interest in terms of both classifica-
tion accuracy and stability for every dataset except for 
D8. On D8 dataset GR outperforms all the other algo-
rithms including RSGSA in terms of stability. Please, see 
Table  3, Fig.  1c, d for more details. RSGSA’s improve-
ment over SVM-RFE ranges from 0.02-0.03 (i.e. 2%-3%) 
with respect to classification accuracy. In terms of sta-
bility, the improvement over GR ranges from 0.15-0.27 

(i.e. 15%-27%). Note that the classification accuracy (i.e., 
informedness) is measured by LSVM using 10-fold cross 
validation as stated above. We also computed classifica-
tion accuracy based on RF and KNN classifiers. Please 
see Additional file 1: Table 6 for evaluation details on all 
the multi-class datasets (i.e., D6-D10).

Discussion
Stability and robustness
Ensuring stability and robustness mitigates 3 key issues 
dominating in supervised feature selection domain: (1) 
In a very underdetermined system where we have few a 
hundreds to thousands of samples with thousands to mil-
lions of features (e.g., DNA microarray, RNA-seq data, 
or GWAS data), it is often found that contrasting feature 
subsets of similar size may yield equally identical results 
(such as comparable classification accuracy measured 

Table 2  Performance of two-class gene selection

The best performance metric value among the algorithms on each dataset is highlighted in bold typeface

Average jaccard indices ( JIavg) Average informedness ( Iavg)

Dataset Top genes SU GR KLD RELIEF SVM-RFE RSGSA SU GR KLD RELIEF SVM-RFE RSGSA

D1 50 0.18 0.21 0.05 0.29 0.22 0.38 0.63 0.62 0.52 0.67 0.75 0.86
100 0.21 0.21 0.11 0.31 0.28 0.41 0.67 0.68 0.67 0.64 0.75 0.85
150 0.23 0.23 0.14 0.32 0.31 0.44 0.66 0.67 0.62 0.62 0.74 0.84
200 0.25 0.25 0.18 0.33 0.34 0.47 0.66 0.68 0.61 0.62 0.74 0.86

D2 50 0.04 0.06 0.02 0.05 0.14 0.23 0.14 0.06 0.05 0.33 0.56 0.74
100 0.05 0.06 0.03 0.06 0.19 0.25 0.21 0.17 0.01 0.34 0.59 0.79
150 0.07 0.08 0.05 0.07 0.21 0.27 0.19 0.27 0.11 0.38 0.63 0.79
200 0.08 0.08 0.07 0.08 0.24 0.29 0.18 0.33 0.16 0.36 0.68 0.84

D3 50 0.39 0.44 0.05 0.24 0.32 0.56 0.92 0.90 0.81 0.93 0.96 0.99
100 0.35 0.43 0.05 0.22 0.34 0.52 0.95 0.92 0.83 0.92 0.98 0.99
150 0.33 0.43 0.07 0.22 0.35 0.53 0.92 0.92 0.88 0.91 0.98 0.99
200 0.31 0.42 0.08 0.22 0.37 0.53 0.93 0.93 0.88 0.94 0.97 0.99

D4 50 0.04 0.09 0.01 0.03 0.12 0.17 0.38 0.23 0.26 0.45 0.55 0.47

100 0.05 0.13 0.02 0.04 0.17 0.19 0.39 0.22 0.31 0.40 0.57 0.45

150 0.06 0.11 0.03 0.05 0.18 0.21 0.38 0.20 0.25 0.44 0.61 0.50

200 0.07 0.11 0.04 0.06 0.20 0.22 0.40 0.25 0.29 0.43 0.59 0.52

D5 50 0.84 0.78 0.66 0.61 0.56 0.65 0.99 0.99 0.99 0.99 1.00 1.00
100 0.73 0.65 0.54 0.73 0.56 0.63 1.00 1.00 1.00 0.99 1.00 1.00
150 0.73 0.61 0.48 0.81 0.55 0.64 1.00 1.00 1.00 1.00 1.00 1.00
200 0.74 0.60 0.44 0.81 0.56 0.65 1.00 1.00 0.99 1.00 1.00 1.00

Average 50 0.30 0.32 0.16 0.24 0.27 0.40 0.61 0.56 0.53 0.67 0.76 0.81
100 0.28 0.30 0.15 0.27 0.31 0.40 0.64 0.60 0.56 0.66 0.78 0.82
150 0.28 0.29 0.15 0.29 0.32 0.42 0.63 0.61 0.57 0.67 0.79 0.82
200 0.29 0.29 0.16 0.30 0.34 0.43 0.63 0.64 0.59 0.67 0.80 0.84

Average RSGSA gain 50 0.33 0.25 1.50 0.67 0.48 0.33 0.45 0.53 0.21 0.07

100 0.43 0.33 1.67 0.48 0.29 0.28 0.37 0.46 0.24 0.05

150 0.50 0.45 1.80 0.45 0.31 0.30 0.34 0.44 0.22 0.04

200 0.48 0.48 1.69 0.43 0.26 0.33 0.31 0.42 0.25 0.05
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by SVMs, RFs, or Neural Networks) [22]. Aggregating a 
set of feature selection algorithms can aid to reduce the 
risk of erroneously favoring an unstable subset of fea-
tures; (2) Different feature selection methods may fall in 
local optima in the space of feature subsets. Therefore, 
individually each of the algorithms can produce unsta-
ble results. Ensembling multiple feature selection tech-
niques may yield a better approximation to the optimal 
subset or ranking of features; (3) Finally, the hypothesis 
space searched by an algorithm alone might not contain 
the true target function. By acting together in a concerted 
way, a set of feature selectors can produce a good approx-
imation over the hypothesis space.

As noted in the Methods section, we attempt to make 
our learning model stable by introducing a small amount 
of random “noise” in the training examples, e.g., in each 
recursive step of SSVM-RFE, each linear SVM from the 
set of ensembles is trained with slightly different exam-
ples by randomly flipping class labels of a few examples. 
Like any other learning algorithm, SVM is also very sen-
sitive to the training examples. As a consequence, each 
SVM will produce a slightly different hyperplane and 
we will end up with different values in the weight asso-
ciated with each gene. The claim is that if a gene is sta-
ble (i.e., discriminating), it will remain stable within the 
small “noise” bound. At the end, SSVM-RFE assigns 
ranks to every gene in the dataset. The lower the rank of 

a particular gene, the higher will be its importance. To 
ensure robustness we bootstrap the training examples 
multiple times, i.e., we randomly select a subset of the 
training examples from the entire set of training exam-
ples with replacement multiple times. For each boot-
strapped samples, we execute SSVM-REF and get ranks 
based on their importance for all the genes. Finally, we 
aggregate gene ranks produced by each SSVM-RFE by 
using Equation 3.

To demonstrate the effectiveness of RSGSA in terms 
of stability, we show the outcome on D1 dataset in Fig. 4 
by ensembling 5 linear SVMs in one recursive stage of 
SSVM-RFE. (Please note that we have used 10 LSVMs 
in our experiments; we have shown the output of the 
5 LSVMs for clarity in Fig.  4e). One of the notable sta-
tistical measures of stability is the coefficient of vari-
ation (CV). It is a standardized measure of dispersion 
of a probability distribution or frequency distribution. 
CV is defined as the ratio of the standard deviation σ to 
the mean µ [23]: cv = σ

µ
 . It is generally expressed as a 

percentage. The higher the coefficient of variation, the 
greater will be the level of dispersion around the mean. 
Therefore, the lower the value of the coefficient of vari-
ation, the more precise will be the estimate. Consider 10 
most important and 10 least important genes accord-
ing to their weight distribution coming from 10 linear 
SVMs. CVs of 10 most important genes vary from 4% to 
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15% (please see, Fig. 4b). Boxplots in Fig. 4a also support 
the evidence. On the contrary, for the 10 least important 
genes, CV varies from 60% to 170% (please see, Fig. 4d). 
Boxplots in Fig.  4c also support the findings. Figure  4e 
shows the weight of every gene in D1 dataset produced 
by 5 linear SVMs in the first recursive stage of SSVM-
RFE. Please note that we randomly introduced “noise” by 
flipping 3% of the class labels before executing each linear 
SVM.

Biological significance
We have enlisted the top 10 most important genes in 
Table  4. They have been selected from D1 dataset by 
our proposed algorithm RSGSA. Next we briefly discuss 
our findings considering the top 3 genes. T-cell-specific 
transcription factor 7 (TCF7) is directly associated with 

colorectal cancer [24]. The second one, TPM4, is asso-
ciated with clinical progression in colon cancer patients 
and acts as a tumor suppressor in colon cancer cells 
[https://​www.​ncbi.​nlm.​nih.​gov/​gene/​7171]. Finally, 
ACTB is closely associated with a variety of cancers 
and accumulating evidence indicates that ACTB is de-
regulated in liver, melanoma, renal, colorectal, gastric, 
pancreatic, esophageal, lung, breast, prostate, ovarian 
cancers, leukemia and lymphoma [25].

Now consider the biological significance of the top 100 
genes selected from colon tumor dataset (D1) by our 
proposed method RSGSA. They can be found at Addi-
tional file  1: Table  4. The enrichment analysis is based 
on three dimensions, e.g., gene ontology-biological pro-
cesses (GO-BP) terms, disease ontology (DO) terms, and 
biological pathways. Please, note that GO-BP and DO 

Table 3  Performance of multi-class gene selection

The best performance metric value among the algorithms on each dataset is highlighted in bold typeface

Average Jaccard indices ( JIavg) Average informedness ( Iavg)

Dataset Top genes SU GR KLD RELIEF SVM-RFE RSGSA SU GR KLD RELIEF SVM-RFE RSGSA

D6 50 0.34 0.46 0.10 0.30 0.30 0.52 0.93 0.94 0.87 0.94 0.96 0.98
100 0.32 0.46 0.08 0.27 0.36 0.58 0.94 0.94 0.90 0.95 0.96 0.99
150 0.31 0.43 0.08 0.27 0.36 0.61 0.94 0.94 0.90 0.96 0.96 0.99
200 0.30 0.42 0.09 0.27 0.38 0.62 0.94 0.94 0.92 0.95 0.96 0.99

D7 50 0.39 0.49 0.12 0.17 0.25 0.65 0.90 0.90 0.82 0.84 0.92 0.99
100 0.35 0.48 0.13 0.18 0.28 0.62 0.90 0.91 0.89 0.86 0.94 0.99
150 0.34 0.45 0.13 0.18 0.31 0.64 0.90 0.91 0.90 0.87 0.95 0.99
200 0.33 0.44 0.12 0.18 0.32 0.68 0.90 0.91 0.90 0.88 0.94 0.99

D8 50 0.60 0.61 0.19 0.20 0.22 0.50 0.89 0.91 0.89 0.90 0.95 1.00
100 0.60 0.69 0.17 0.24 0.28 0.54 0.91 0.91 0.91 0.91 0.96 1.00
150 0.60 0.70 0.17 0.26 0.31 0.57 0.92 0.91 0.93 0.93 0.96 1.00
200 0.59 0.68 0.16 0.28 0.34 0.61 0.93 0.92 0.93 0.93 0.96 1.00

D9 50 0.34 0.36 0.10 0.24 0.29 0.48 0.92 0.93 0.91 0.93 0.98 0.97

100 0.36 0.36 0.07 0.27 0.33 0.50 0.94 0.94 0.93 0.94 0.98 0.98
150 0.36 0.37 0.07 0.27 0.35 0.48 0.95 0.95 0.93 0.94 0.98 0.98
200 0.36 0.37 0.07 0.27 0.36 0.47 0.96 0.95 0.93 0.94 0.98 0.99

D10 50 0.32 0.50 0.16 0.27 0.42 0.61 0.99 1.00 0.98 0.98 0.99 1.00
100 0.34 0.49 0.16 0.31 0.47 0.64 1.00 1.00 0.99 1.00 0.99 1.00
150 0.36 0.49 0.18 0.34 0.48 0.66 1.00 1.00 1.00 1.00 1.00 1.00
200 0.38 0.49 0.19 0.36 0.51 0.68 1.00 1.00 1.00 1.00 1.00 1.00

Average 50 0.40 0.48 0.13 0.24 0.30 0.55 0.93 0.94 0.89 0.92 0.96 0.99
100 0.39 0.50 0.12 0.25 0.34 0.58 0.94 0.94 0.92 0.93 0.97 0.99
150 0.39 0.49 0.13 0.26 0.36 0.59 0.94 0.94 0.93 0.94 0.97 0.99
200 0.39 0.48 0.13 0.27 0.38 0.61 0.95 0.94 0.94 0.94 0.97 0.99

Average RSGSA Gain 50 0.38 0.15 3.23 1.29 0.83 0.06 0.05 0.11 0.08 0.03

100 0.49 0.16 3.83 1.32 0.71 0.05 0.05 0.08 0.06 0.02

150 0.51 0.20 3.54 1.27 0.64 0.05 0.05 0.06 0.05 0.02

200 0.56 0.27 3.69 1.26 0.61 0.04 0.05 0.05 0.05 0.02

https://www.ncbi.nlm.nih.gov/gene/7171
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analyses were performed using “clusterProfiler” [26]. Bio-
logical pathways are extracted from “ConsensusPathDB-
human” (CPDB, in short) [http://​cpdb.​molgen.​mpg.​de/]. 
Next we briefly illustrate each of the enrichment analyses.

Gene ontology‑biological processes (GO‑BP)
One of the main uses of the GO terms is to per-
form enrichment analysis on a given set of genes. For 
instance, an enrichment analysis will find which GO 

terms are over-represented (or under-represented) 
using annotations for that set of genes. We have per-
formed enrichment analysis on the set of 100 genes as 
noted above based on GO-BP terms and retained 104 
Benjamini-Hochberg corrected (adjusted p < 0.05 ) 
GO-BP terms. Top 10 enriched GO-BP terms can be 
found in Table  5. Please, see Additional file  1: Table  1  
for details about those terms. Most of the terms are 
associated with colon cancer. For example, the authors 

(e)

Fig. 4  Outcome of a recursive stage of SSVM-RFE a Weights of top 10 genes b CV of top 10 genes c Weights of least 10 genes d CV of least 10 
genes e Weights of all genes produced by 5 LSVM and their average in a recursive stage

http://cpdb.molgen.mpg.de/
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in [27] have described CRC and Renal Cell Carcinoma 
(RCC) as concomitant malignancies in their study of 
patients carrying both types of cancer. Patients with 
Retinoblastoma are also shown to have a high risk of 
getting colon cancer over time [28].

Disease ontology (DO)
Like GO, the disease ontology (DO) is a formal ontol-
ogy of human disease. We have performed enrichment 
analysis on the set of top 100 genes as noted above based 
on DO terms and retained 17 Benjamini-Hochberg cor-
rected (with an adjusted p < 0.05 ) DO terms. Top 10 
enriched DO terms can be found in Table  6. Please see 
Additional file 1: Table 2  for details about those terms. 
Almost all of the retained enriched DO terms are associ-
ated with colon cancer. For an instance, although a rare 
case, it has been reported that a 76-year-old woman has 
a colon cancer with ossification [29]. Relation between 
colorectal cancer and ossification is also demonstrated in 
[43] and [44]. As another example, it has been shown that 
colon cancer progression has been impaired via inacti-
vating the Wnt pathway [30].

Biological pathways
We have also performed biological pathway analysis and 
retained 23 Bonferroni adjusted (with p < 0.05 ) enriched 
pathways. Almost all of the retained pathways are asso-
ciated with colon cancer. Top 10 enriched biological 

Table 4  Top 10 genes selected by RSGSA from D1 dataset

Rank Probe ID Gene symbol Full name

0 X59871 TCF7 Transcription factor 7

1 X05276 TPM4 Tropomyosin 4

2 X63432 ACTB Actin beta

3 J05032 DARS1 aspartyl-tRNA synthetase 1

4 D26535 DLST Dihydrolipoamide S-succinyltransferase

5 H68220 FAU FAU ubiquitin like and ribosomal protein S30 fusion

6 T97199 ITGB4 Integrin subunit beta 4

7 T56244 PSMB2 Proteasome subunit beta 2

8 R16255 PPP3CB Protein phosphatase 3 catalytic subunit beta

9 T70063 EIF4G2 Eukaryotic translation initiation factor 4 gamma 2

Table 5  Top 10 enriched (GO-BP) terms

ID Description p value p adjusted

GO:0001503 Ossification 2.89E-06 0.007458585

GO:0016051 Carbohydrate biosynthetic process 9.61E-06 0.012383589

GO:0006352 DNA-templated transcription, initiation 3.30E-05 0.018847646

GO:0006367 Transcription initiation from RNA polymerase II promoter 3.96E-05 0.018847646

GO:0035270 Endocrine system development 4.28E-05 0.018847646

GO:0070371 ERK1 and ERK2 cascade 5.02E-05 0.018847646

GO:0002683 Negative regulation of immune system process 6.27E-05 0.018847646

GO:0006006 Glucose metabolic process 7.11E-05 0.018847646

GO:0010038 Response to metal ion 7.30E-05 0.018847646

GO:0031018 Endocrine pancreas development 7.31E-05 0.018847646

Table 6  Top 10 enriched disease ontology (DO) terms

ID Description p  value p adjusted

DOID:3996 Urinary system cancer 0.000161338 0.031918678

DOID:4450 Renal cell carcinoma 0.00027404 0.031918678

DOID:0060116 Sensory system cancer 0.000278766 0.031918678

DOID:2174 Ocular cancer 0.000278766 0.031918678

DOID:4451 Renal carcinoma 0.000670596 0.03438733

DOID:768 Retinoblastoma 0.000674808 0.03438733

DOID:771 Retinal cell cancer 0.000674808 0.03438733

DOID:4645 Retinal cancer 0.000738581 0.03438733

DOID:14067 Plasmodium falciparum 
malaria

0.000771616 0.03438733

DOID:2377 Multiple sclerosis 0.000903255 0.03438733
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pathways can be found in Table 7. Please see Additional 
file 1: Table 3  for details about those pathways. Now we 
illustrate some of the pathways in detail. Interleukins are 
a group of cytokines that contribute to growth and dif-
ferentiation, cell migration, and inflammatory and anti-
inflammatory responses by the immune system. In a 
study, authors in [31] examined genetic variation in genes 
from various anti-inflammatory and pro-inflammatory 
interleukins to determine association with colon and rec-
tal cancer risk and overall survival. Data from two popu-
lation-based incident studies of colon cancer (1,555 cases 
and 1,956 controls) and rectal cancer (754 cases and 954 
controls) were utilized. After controlling for multiple 
comparisons, authors found that single nucleotide poly-
morphisms (SNPs) from four genes, IL3, IL6R, IL8, IL15, 
were associated with increased colon cancer risk. It has 
also been discovered that colorectal cancer cells express 
a hybrid form of α6β4 that is never seen in normal cells 
[32]. The expression levels of epidermal growth fac-
tor receptors (EGFRs) vary significantly on normal and 
malignant colon epithelial cells [33]. Furthermore, acti-
vation of the EGFR signaling pathway was proposed as 
a rational target for anti-tumor drugs [34]. In addition, 
Human T-lymphotropic virus-I (HTLV-I) is one of the 
retroviruses associated with human cancer [35].

Conclusions
In this article, we have proposed a robust and stable 
supervised gene selection algorithm RSGSA based on 
graph theory and ensembles of linear SVMs. At the 
beginning, highly correlated genes are discarded by 
employing a novel graph theoretic algorithm. Stability 
of SVM-RFE is ensured by introducing a small “noise” in 
phenotypes. Robustness is secured by instance level per-
turbation (i.e., bootstrapping samples multiple times). 

Rigorous experimental evaluations were performed on 
10 real gene expression datasets. It is evident from the 
results of the performance evaluations that RSGSA is 
indeed an effective and efficient supervised gene selec-
tion algorithm.

Methods
Ensemble feature selection techniques might be 
employed in the domain of supervised gene selection to 
ensure stability and robustness. In this context, we define 
the stability and robustness as they have some clear dis-
tinction between them. In the context of gene selection 
algorithm, we can define robustness as the variation of 
selected genes resulting from small changes in the data-
set, such as adding or removing samples from the data-
set. Likewise, we can define the stability of gene selection 
algorithms as the variation in gene selection results due 
to adding a small amount of “noise” in the dataset. The 
less the variation, the more the algorithm will be robust 
and stable. Both robustness and stability are desirable 
characteristics of a gene selection algorithm, especially 
where the number of biomarkers is much larger than the 
number of samples.

Our algorithm RSGSA runs in 2 stages. At first, it 
removes highly correlated genes and thus, retains only 
approximately independent genes. These independ-
ent genes are then ranked based on their importance by 
cleverly utilizing a set of linear SVMs. To ensure robust-
ness we bootstrapped the samples multiple times to cre-
ate slightly different datasets by randomly taking samples 
with replacement. For each dataset we run our gene rank-
ing algorithm. To ensure stable ranking a small amount 
of “noise” is introduced in the ranking algorithm by ran-
domly flipping class labels of a few samples. To get an in-
depth knowledge about ensemble techniques for feature 

Table 7  Top 10 enriched biological pathways

Pathway Source ID Hypergeometric 
p  value

IL3 NetPath Pathway_IL3 2.75E-06

Cellular senescence KEGG path:hsa04218 4.51E-06

CD4 T cell receptor signaling INOH None 8.12E-06

VEGF INOH None 1.59E-05

Alpha6Beta4Integrin NetPath Pathway_Alpha6Beta4Integrin 1.93E-05

TCR​ NetPath Pathway_TCR​ 2.14E-05

Fibroblast growth factor-1 NetPath Pathway_Fibroblast__growth__factor-1 2.44E-05

a6b1 and a6b4 Integrin signaling PID a6b1_a6b4_integrin_pathway 2.59E-05

BCR NetPath Pathway_BCR 6.87E-05

EPO signaling INOH None 1.02E-04
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selection, the readers are referred to [36]. To the best of 
our knowledge, the algorithmic steps we follow, such as 
removing correlated features and ensuring stability in 
SVM-RFE’s recursive stage are unique in this domain. 
Next we describe our algorithmic framework in detail.

Algorithm 1: Removing correlated genes
Principally, correlated genes do not improve the learning 
model of interest. There are basically 3 main reasons to 
remove correlated genes from the set of given genes: (1) 
making the gene selection algorithm faster; (2) decreas-
ing harmful bias; and (3) making the model simpler and 
explainable.

We have designed and developed a novel graph theo-
retic algorithm to effectively remove the correlated genes 
from consideration. It works as follows.

Suppose we have a set of genes S. A graph G is con-
structed in which there is a node for each gene s ∈ S . Two 
nodes n1 and n2 in G will be connected by an edge e if 
r(n1, n2) ≥ � where r is the Pearson’s correlation coef-
ficient and � is a user defined threshold. In our experi-
ments, we set � = 0.9 . After constructing such a graph G, 
we extract all the connected components of G. For each 
connected component, we measure eigenvector centrality 

[37] of each node residing in that component. In graph 
theory, eigenvector centrality (also called eigencentrality) 
is a measure of the influence of a node in a network. Rela-
tive scores are assigned to all nodes in the network based 
on the concept that connections to high-scoring nodes 
contribute more to the score of the node in question than 
equal connections to low-scoring nodes. A node having 
a high eigenvector score demonstrates the fact that it is 
connected to many nodes who themselves have high 
eigenvector scores. Let a node n have the highest eigen-
vector score across all the connected components. We 
delete all the neighboring nodes of n and n from G. We 
record n as a leader of its neighbors. Since, all the neigh-
bors of n are connected with n, they are highly correlated 
with n. So, deleting the neighbors of n will not only cost 
minimal information loss but also reduce the dimension 
of the gene space. The same procedure is repeated until 
all the nodes n ∈ G are isolated, i.e., there is no edge e 
in G. We record all such nodes n as leaders. These lead-
ers are then ranked based on their importance as stated 
below. The details of the algorithm can be found in Algo-
rithm  1. Note that we also return all the neighbors of 
each leader after ranking. So, there is no information loss 
due to pruning of the genes. 
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Algorithm 2: Ranking genes
Recursive feature elimination method based on support 
vector machines (SVM-RFE, in short) was first proposed 
in [17] to rank genes based on their importance for can-
cer classification. It works by recursively removing one or 
more weak features (e.g., genes) until the specified num-
ber of features is reached. We have provided a short sum-
mary of SVM-RFE in Appendix.

In this article, we attempt to make SVM-RFE stable by 
introducing small changes in class labels and employing 
ensembles of LSVMs in each recursive step to eliminate 
a set of least important genes. Due to this small change, 
the weight associated with each gene will not be identi-
cal for the identical dataset in different runs. By averaging 
the weights across a set of weight vectors from LSVMs 
of the same configuration, we can make the weight vec-
tor stable. Since, weights are directly associated with the 
importance of the genes, ranking should also be stable. 
We call this variation of SVM-RFE as Stable SVM-RFE 
(SSVM-RFE, in short). Let the number of recursive steps 
taken by SSVM-RFE to rank a set S of genes of interest be 
R. Suppose in each of the R recursive steps we employ a 
set of L LSVMs. Each LSVM l ∈ L is trained to build an 
inductive learning model by introducing small changes in 
class labels and we get a corresponding weight vector wl 
( 1 ≤ l ≤ |L| ). According to [17] the importance of the ith 
gene Ii = (wi

l)
2 where wi

l represents the ith weight com-
ponent of wth

l  weight vector. At the end of each recursive 
step, we get |L| weight vectors. Let the set of weight vec-
tors obtained in the rth recursive step be denoted as Wr , 
1 ≤ r ≤ R . Since in each run we introduce small “noise” 
in class labels, the weight vectors will be different from 
each other. To make it stable we normalize each weight 
vector and average each component. Let the number of 
genes remaining in a particular run be n. Each weight 
vector wl will have n components and is normalized as 
follows:

The ith component of the final weight vector Wr for the rth 
recursive step ( 1 ≤ r ≤ R ) is formed as follows:

At the end of the rth recursive step, the importance of 
the ith gene is defined as Iri = Wi

r and we discard one or 
more genes having the least scores. The above procedure 
is done recursively until we have the desired number of 
genes left. Consequently, SSVM-RFE outputs the most 
important genes. We claim that these ranks are stable.

To make our algorithm robust, we repeatedly run the 
above procedure on different bootstrapped samples. If 
the dataset is imbalanced, our algorithm automatically 
makes it balanced before bootstrapped sampling by cre-
ating synthetic samples from the minority class instead of 
creating copies [38]. The final ranking is done by aggre-
gating all the rankings produced from different samples. 
Let the number of SSVM-RFE runs employed be m. Each 
SSVM-RFE run produces a list of stable ranks for the 
given set of genes S. Let the ith SSVM-RFE run provide 
a gene ranking si = {s1i , . . . , s

|S|
i } where 1 ≤ i ≤ m . We 

can aggregate the gene rankings by taking the sums as 
follows:

where j represents the jth gene. The pseudo code of our 
algorithm can be found in Algorithm 2. Please, note that 
the input data matrix D is formed using Algorithm 1. 

(1)w′
l =

wl∑n
i=1 |w

i
l |

(2)Wi
r =

|L|∑

l=1

(wi
l)
2

(3)sj =

m∑

i=1

s
j
i
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Analysis
In this section we analyze the time complexity of the 
algorithm. Let n be the number of genes in the input. Let 
e be the number of training examples.

In Algorithm  1, we can construct the graph G(V,  E) 
in time O(n2e) , since the Pearson’s correlation coeffi-
cient between any two genes can be computed in O(e) 
time. Given a graph G(V, E), the problem of computing 
the eigencentrality for each node can be reduced to the 
problem of computing the eigen vectors of a |V | × |V | 

matrix [39]. As a result, if there are n genes, then their 
eigencentrality values can be computed in O(n3) time 
(since eigen vectors for a n× n matrix can be computed 
in O(n3) time [40, 41]).

In Algorithm  1, we start with n genes, find a node 
with the highest eigencentrality, and remove all of its 
neighbors and itself. We repeat the process of isolat-
ing a node and its neighbors until there are no more 
edges in the graph. This process is described in lines 2 
to 14. In each iteration of this while loop the number of 
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remaining genes decreases. Note that in the worst case 
only one edge (and two nodes) from the graph might 
get deleted. This means that the total time for comput-
ing the eigencentrality for the nodes across all the itera-
tions of the while loop is O(n4) . Please note that this is 
the worst case which does not arise in practice. In prac-
tice, our algorithm is very fast.

Thus the run time of Algorithm 1 is O(n2e + n4).
In Algorithm 2, let N be the starting number of genes. 

For example, let N/2 be the target number of genes to 
be output. In each iteration of the repeat loop of line 8, 
a constant fraction of the genes with the lowest weights 
are eliminated. In other words, the repeat loop is exe-
cuted only R = O(1) times. For instance, in the first 
iteration we eliminate N

2R genes; In the second iteration 
we eliminate another set of N

2R genes, and so on.
In every iteration of the repeat loop we have to train 

a linear SVM |L| times. The run time of linear SVM is 
O(abmin{a, b}) where a is the number of attributes and 
b is the number of training examples (see e.g., [42]). As 
a result, the time spent in one execution of the repeat 
loop is O(|L|RNemin{N , e}).

The for loop of line 5 is executed m times. As 
a result, the total run time of Algorithm  2 is 
O(m|L|RNemin{N , e}).

Put together, the run time of our algorithm is 
O(n2e + n4 +m|L|RNemin{N , e}) . If n > e , this run time 
will be O(n4 +m|L|Rne2) . On the other hand, if e ≥ n , 
then the run time will be O(n2e + n4 +m|L|Rn2e) . We 
arrive at the following Theorem:

Theorem  1  The run time of RSGSA is 
O(n2e + n4 +m|L|RNemin{N , e}) . If n > e , this run time 
will be O(n4 +m|L|Rne2) . On the other hand, if e ≥ n , 
then the run time will be O(n2e + n4 +m|L|Rn2e).

Evaluation metrics
We have measured the effectiveness of our proposed 
algorithm RSGSA using 3 different performance met-
rics. These metrics are defined below.

Jaccard index
Stability is measured by employing Jaccard index. It 
measures similarity between finite sample sets, and is 
defined as the size of the intersection divided by the 
size of the union of the sample sets: J (A,B) = |A∩B|

|A∪B| 
where A and B are two sample sets. The Jaccard index 
varies from 0.0 to +1.0 . The higher the value, the more 
similar will be the two sets.

Informedness
We are interested in evaluating the goodness of a clas-
sifier C in correctly identifying positive and negative 
examples from a set of examples. For instance, positive 
and negative examples in binary classification prob-
lem can be referred to as persons having a specific dis-
ease and healthy individuals, respectively. We refer to 
positive examples that are identified as positive as true 
positives (TP), positive examples that are identified 
as negative as false negatives (FN), negative examples 
that are identified as positive as false positives (FP), and 
negative examples that are identified as negative as true 
negatives (TN) by a classification algorithm C.

Informedness is a measure of how informed 
system C is about positives and negatives, i.e. 
Informedness = TP

TP+FN − FP
FP+TN  . It can be also written 

as: Informedness = sensitivity+ specificity− 1 . It varies 
from -1.0 to +1.0 . A value of +1.0 implies that C is fully 
informed about positives and negatives.

In this article informedness is also termed as accu-
racy, i.e., these two terms are interchangeable through-
out this article. Note that informedness is measured 
using 10-fold cross validation.

Gain
Gain measures the percentage improvement over any 
performance metric (such as Jaccard index, informed-
ness, etc.) achieved by RSGSA when compared to other 
algorithms. Let us assume the performance metric of 
interest of RSGSA and another algorithm of interest be 
p′ and p′′ , respectively. The gain is measured using this 
formulation: Gain =

p′−p′′

p′′ × 100.0%.

Appendix
Support Vector Machine (SVM) is a classic supervised 
machine learning model [45]. SVM effectively solves 
both classification and regression problems. Based on 
a subset of training points and a proper selection of a 
kernel function, SVM identifies an optimum decision 
function. For example, Linear SVM is an SVM that uses 
a linear kernel function. This decision function could 
then be used to predict the class membership of new 
data points (i.e., decide the best class to which the new 
data point potentially belongs). Note that SVM could 
solve both types of classification problems, namely 
binary and multi-class. In multi-class classification 
problems, the problem is reduced to training multiple 
binary classifiers. Each binary classifier is trained to 
decide whether a new data point belongs to one par-
ticular class label or the others. Finally, the decision 
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is based on a voting system that analyzes all the labels 
generated by all the binary classifiers.

At the beginning, a linear SVM (LSVM, in short) is 
trained on the initial set of features to build an induc-
tive learning model. In binary classification problem this 
model is nothing but a vector of weights (also known as 
coefficient vector) describing a separating hyperplane 
between two classes. Each entry of the vector corre-
sponds to the coefficient of a particular feature. The 
importance of each feature is directly proportional to its 
coefficient in the weight vector [17]. The more the weight 
of a feature the more will it be important. The least 
important features are then pruned from the current set 
of features. This procedure is recursively repeated on the 
current set of features until the desired number of most 
important features is reached.
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