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Abstract

Coronavirus disease 2019 (COVID-19) is a declared pandemic that is spreading all over the world at a dreadfully fast
rate. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the pathogen of COVID-19, infects the human
body using angiotensin-converting enzyme 2 (ACE2) as a receptor identical to the severe acute respiratory
syndrome (SARS) pandemic that occurred in 2002–2003. SARS-CoV-2 has a higher binding affinity to human ACE2
than to that of other species. Animal models that mimic the human disease are highly essential to develop
therapeutics and vaccines against COVID-19. Here, we review transgenic mice that express human ACE2 in the
airway and other epithelia and have shown to develop a rapidly lethal infection after intranasal inoculation with
SARS-CoV, the pathogen of SARS. This literature review aims to present the importance of utilizing the human ACE2
transgenic mouse model to better understand the pathogenesis of COVID-19 and develop both therapeutics and
vaccines.
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Introduction
Coronavirus (CoV), which belongs to the subfamily Cor-
onavirinae, family Coronavirdiae, and order Nidovirales,
has repeatedly crossed species barriers, and some have
become important human pathogens [1]. In December
2019, a highly pathogenic novel coronavirus, severe
acute respiratory syndrome-associated coronavirus-2
(SARS-CoV-2), emerged as the cause of coronavirus dis-
ease 2019 (COVID-19). This virus which likely origi-
nated from bats then transmitted into/among humans
[1] has affected 212 countries and territories around the
world causing over 3.5 million confirmed cases of hu-
man infection and over 250,000 deaths in just a few
short months [2]. It is known that the species specificity,
host tropism, and transmission capacity of the virus are

determined by the viral envelope spike (S) protein medi-
ating the receptor-binding affinity to the host receptor.
Therefore, to elucidate the pathogenesis of SARS-CoV-2
and develop vaccines and treatments for COVID-19, ap-
propriate preclinical animal models that not only express
human angiotensin-converting enzyme (ACE2), a func-
tional receptor of SARS-CoV-2, but also can recapitulate
the symptoms, is immediately required [3, 4]. Here, we
describe the role of ACE2 in COVID-19 and the urgent
need of translational research using human (h) ACE2
transgenic (Tg) mice, which are not only susceptible to
the COVID-19 infection but, to varying degrees, also
demonstrate the symptoms observed in human patients
infected with this pandemic disease.

Angiotensin-converting enzyme 2 (ACE2)
ACE2, known as ACE-related carboxypeptidase or
angiotensin-converting enzyme homologue (ACEH), is
a monocarboxypeptidase that is expressed in the lung,

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: Wonyeong.Kang@jax.org
2The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive,
Farmington, CT 06032, USA
Full list of author information is available at the end of the article

Lutz et al. Human Genomics           (2020) 14:20 
https://doi.org/10.1186/s40246-020-00272-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-020-00272-6&domain=pdf
http://orcid.org/0000-0002-4439-9987
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Wonyeong.Kang@jax.org


arteries, heart, kidney, brain, and intestines [5, 6], and
is an essential component of the renin-angiotensin-
aldosterone system (RAAS) [7]. The RAAS is a
hormone system leading to the regulation of blood
pressure, water balance, electrolytic homeostasis, vas-
cular resistance, and heart remodeling [8]. The clas-
sical pathway of RAAS is initiated when circulating
blood volume is decreased; the juxtaglomerular cells
lining the afferent arterioles located proximal to the
renal glomeruli recognize this change and secrete
renin into blood circulation. Renin cleaves angiotensi-
nogen into angiotensin I (Ang I) in the liver. The cir-
culating Ang I is hydrolyzed to Ang II by ACE that is
primarily located in the pulmonary and renal vessels.
Ang II activates the angiotensin type I receptor
(AT1R) to initiate a vasoconstrictor response and
stimulate aldosterone synthesis in the adrenal gland.
Then, both circulating blood volume and blood pres-
sure are increased when aldosterone induces the renal
tubes to initiate sodium and water retention [9, 10].
In RAAS, ACE2 directly hydrolyzes Ang II to yield
Ang1–7 or converts Ang I to Ang1–9, eventually cre-
ating the vasodilator, Ang1–7, which is the most

crucial product of ACE2. Ang1–7 binds to the G
protein-coupled Mas receptor (MasR) which leads to
the cellular signaling that, opposite to the vasocon-
strictor effects of Ang II, does not stimulate aldoster-
one secretion (Fig. 1) [6, 9, 11, 12]. It is now
recognized that the RAAS is far more complicated
than the initial understanding of its classical function
[13]. The imbalance between the levels of Ang I, Ang
II, and Ang cleavage peptides (Ang1–9) leads to vaso-
constriction and impairs vascular reactivity. As a key
enzyme in controlling the balance of players in RAAS,
ACE2 plays a critical role in cardio-renal and pul-
monary disease [14, 15].

The role of ACE2 as a receptor in the
pathogenesis of SARS-CoV-2
ACE2 has been implicated as a functional cellular recep-
tor for both SARS-CoV, the pathogen of SARS, which
caused more than 8000 cases of infection and 774 deaths
in 37 countries from 2002 to 2003 [16], and SARS-CoV-
2 [17]. There have been abundant studies conducted to
prove the essential role of ACE2 in the pathogenesis and
severity of SARS-CoV [18–24], and leveraging this rich

Fig. 1 The role of the ACE2 and the adverse effect of SARS-CoV in the RAAS. Renin cleaves angiotensinogen into angiotensin I (Ang I), and the
circulating Ang I is hydrolyzed to Ang II by ACE. Ang II activates the AT1R to lead the pro-atrophy, pro-fibrosis, pro-inflammation, pro-oxidant,
vasoconstrictor response, and increase aldosterone synthesis. ACE2 directly hydrolyzes Ang I and Ang II to generate Ang1–9 and Ang1–7,
respectively. Ang1–7 binds to the MasR which leads to the cellular signaling that opposite to the tissue injury effects of Ang II and does not
stimulate aldosterone secretion. The SARS-CoV destroys the balance of RAAS by downregulating the ACE2 expression levels. Conclusively, the
disproportion between AT1R and MasR axes in SARS-CoV infected patients contributes to the development of tissue injury and more severe
inflammatory reactions
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knowledge is highly beneficial and useful to elucidate the
uses of ACE2 in the SARS-CoV-2 infection considering
the similarity in both viral structure and pathogenesis
between the two viruses [25]. Viral binding ability of
SARS-CoV to ACE2 is known as the most crucial factor
that supports the viral replication in the host and deter-
mines the infection efficiency in different species, includ-
ing human, mice, rats, and palm civets [26–30].
Although the species responsible for transmission re-
mains unclear [31, 32], several studies have shown that
as SARS-CoV did, SARS-CoV-2 also originated from the
bat and may also contain partial genes from another
intermediate species, the pangolin (scale anteater) with
high conservation in the genome which encode the spike
proteins. The receptor-binding motif (RBM) in the
receptor-binding domain (RBD) of SARS-CoV-2 is
nearly identical to the one from the virus isolated in the
pangolin [33–35]. By aligning the sequence of amino
acids (AAs) in viral RBD to AAs in ACE2, five residues
in hACE2, including K31, E35, D38, M82, and K353,
were identified as the key AAs for interacting with viral
RBM of both SARS-CoV and SARS-CoV-2 [36, 37].
Mainly, K31 and K353 were virus binding hot spots that
play critical roles in the cross-species and human to hu-
man transmissions [36, 38, 39]. Recently, the ACE2
binding affinity to the RBD of both SARS-CoV and
SARS-CoV-2 was evaluated in forty-two mammals based
on hot spot AAs in the ACE2 of each of the species. The
protein complex structure simulation study supported
the possibility that pangolin ACE2 might have a better
affinity to SARS-CoV-2 because the N82 of pangolin
ACE2 could contact closer to the viral RBD than M82 of
hACE2 [40].
The major clinical characteristics of SARS-CoV and

SARS-CoV-2 patients are the deterioration of lung func-
tion and the apparent loss of lung repair capacity [41,
42]. ACE2 is expressed primarily in alveolar epithelial
type II cells, which produce surfactant to prevent col-
lapse of the alveoli in order to maintain normal gas ex-
change in the lung [17, 43]. The interaction between
ACE2 and the RBD of the viral spike protein leads to
endocytosis of virus particles through internalization
with ACE2 and establishes SARS-CoV infection [44],
leading to cell damage [45, 46]. Although the catalytic
pocket of ACE2 was not blocked by binding to RBD,
SARS-CoV infection notably downregulated the ACE2
expression at the transcriptional and posttranslational
level [20–23]. This is validated by both in vitro and
in vivo studies. Challenged with recombinant spike pro-
tein of SARS-CoV, cell culture downregulated ACE2 ex-
pression levels [47] and injection of SARS-CoV spike
into mice decreased ACE2 expression levels, leading to a
worsened lung injury (Fig. 1) [47, 48]. Furthermore, in-
flammation, which is excessively produced by infections

of both SARS-CoV-2 [25] and SARS-CoV [46, 49–53],
can suppress ACE2 transcription [54, 55], resulting in
the RAAS activation. This activation contributes to the
development of severe acute respiratory distress syn-
drome (ARDS) or acute lung injury, and more severe in-
flammatory reactions [48]. This suggests that direct viral
interaction and the subsequent inflammation contribute
to the ACE2 downregulation, thusly ACE2 potentially
could serve to protect the lung from injury [56]. How-
ever, there are concerns about normalization or upregu-
lation of ACE2 expression levels in patients because that
would enable both a heightened level of infectivity of
SARS-CoV-2 as well as clinical illness severity [57]. In-
deed, the pathogenic events caused by these viral infec-
tions have been recognized as highly complex and not
fully understood [58], so solely targeting the ACE2-
mediated pathways alone may not be able to fully answer
the questions regarding diversity of symptoms. Studies
elucidating the pathogenesis and evaluating the efficacy
of potential therapeutics and vaccines must be immedi-
ately conducted by utilizing the appropriate preclinical
model.

hACE2 Tg mouse models
Relevant animal models are essential in understanding
the pathogenesis of both SARS [59] and COVID-19 [60].
Several animal models have been shown to be suscep-
tible to SARS-CoV infection, such as ferrets, hamsters,
mice, and non-human primates, which include ma-
caques, African green monkeys, and marmosets [28, 45,
61–65]. These animals exhibited viral replication with a
limited degree of histopathology and clinical illness, but
none of them displayed consistent disease symptoms, an
immunological response profile, or mortality [59]. The
spike protein of SARS-CoV has a much higher binding
affinity to hACE2 than to that of mice, rats, and other
animal species, which correlates with the much lower
level of permissiveness to this virus by these animals
[24]. Therefore, some Tg mouse models expressing
hACE2 were developed and used to elucidate the com-
plex ACE2-mediated responses in SARS-CoV infection
[59, 66]. These hACE2 Tg mice can provide significant
findings to discover the pathogenesis of SARS-CoV-2
and support the development of COVID-19 therapeutics
and vaccines.

Human cytokeratin 18 (K18)-hACE2 Tg mouse models
K18-hACE2 Tg mice, also known as B6.Cg-Tg(K18-
ACE2)2Prlmn/J, were developed by McCray et al. in
2006 [66, 67]. The purified DNA fragment containing
the hACE2 coding sequence and 5′ and 3′ genomic re-
gions of the human K18 gene, shown to be required for
driving high-level epithelial cell-specific expression, was
injected into pronuclei of zygotes from the intercross of
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(C57BL/6J × SJL/J) F2 parents to generate transgenic
embryos (Table 1). The mice were then backcrossed
onto a C57BL/6 background. The hACE2 mRNA ex-
pression was detected in several tissues, including the
lung, liver, kidney, and colon, and a very low but meas-
urable mRNA level of hACE2 was found in the brain
[66]. Intranasal inoculation with SARS-CoV caused the
development of rapidly fatal disease with the outcome
correlated by the copy number and hACE2 mRNA level.
The mice with the high hACE2 expression level (Tg
lines 1 and 2) succumbed from day 3 to 5 post-infection
(p.i.), whereas in the Tg line 3 which showed a lower
hACE2 expression died 5 to 7 days p.i. Viral replication
was found in the lungs of both K18-hACE2 Tg and non-
Tg mice; however, the viral titers were lower and clear-
ance much faster in the non-Tg mice. K18-hACE2 Tg
mice began to lose weight by 3 to 5 days following
SARS-CoV infection becoming lethargic with labored
breathing, and all died within 7 days (Table 1) [66].
Similar to the patient’s symptoms, the lung was most ob-
viously the organ majorly affected by SARS-CoV infec-
tion in K18-hACE2 Tg mice, showing significant
inflammatory reactions (IFN-gamma, CXCL-1, CXCL-
10, IL-6, IL-1beta, etc.) hemorrhage, epithelial cell dam-
age, and congestion of alveolar septum (Fig. 2) [66, 67].
One of the more interesting findings regarding these
mice was the heavy viral infection in the brain with in-
creased inflammatory cytokines (CXCL-1, CXCL-10, IL-
6, IL-1beta, etc.) (Fig. 2), postulated to be a major factor
in the aspiration pneumonia observed in K18-hACE2 Tg
mice and occasionally in infected patients as well [66].
In fact, there were several studies that detected virus in
the brain of patients infected with SARS-CoV [46, 50,
72]. Some patients who survived this viral disease dis-
played the neurological/psychological sequelae that are

presumed to be the side effects of either a corticosteroid
therapy or a severe lung infection [72–75]. Further in-
tensive investigation of SARS-CoV-induced neurological
disease was a challenge due to the difficulty in obtaining
infected brain tissues derived from patients [67]. There-
fore, the K18-hACE2 Tg mouse was used to discover the
pathogenic mechanism of SARS-CoV, including viral
entry into the central nervous system (CNS), the spread
of the neuronal infection, and the cause of lethality [67].
By detecting viral antigens in the different regions of the
mouse brain and observing time-dependently, the neur-
onal infection of SARS-CoV was revealed to initiate
from the olfactory bulb, spreading into the brain thor-
oughly 2 to 3 days after intranasal inoculation of the
virus and induced neuronal loss [67]. The brain of the
patient infected with SARS-CoV exhibited neuronal ne-
crosis, glial hyperplasia, and edema while the viral infec-
tion mainly affected neurons [46, 50, 72], which is
consistent with studies showing a distinguished neuronal
tropism of SARS-CoV in infected K18-hACE2 Tg mice
[59, 66]. Based on these SARS studies which utilized the
K18-hACE2 Tg mice, some possible mechanisms includ-
ing the high regional infection of the cardiorespiratory
center in the medulla oblongata and the extreme inflam-
matory reactions that resulted in a “cytokine storm”
were also suggested [67].

AC70, AC22, and AC63 hACE2 Tg mouse models
In 2006, Tseng at. al, developed the hACE2 Tg mouse
lineages (i.e., AC-12, AC-22, AC-50, AC-63, and AC-70)
expressing hACE2 under the CAG promoter, a compos-
ite promoter consisting of the cytomegalovirus immedi-
ate early enhancer, the chicken β-actin promoter, rabbit
globulin splicing, and polyadenylation sites to drive high
levels of gene expression in eukaryotic expression

Table 1 The comparison of outcomes in each hACE2 Tg mouse model to SARS-CoV infection

K18-hACE2 [66, 67] AC70, AC22, and AC63 [59, 68] HFH4-ACE2 [69] Mouse ACE2 promoter-driven
hACE2 Tg mice [70]

Promoter Human K18 promoter CAG promoter Human HFH4 promoter Mouse ACE2 promoter

Parental mice of zygotes (C57BL/6J × SJL/J) F2 (C57BL/6J × C3H/HeJ) F1 (C3H × C57BL/6) F1 ICR

Viral strains Urbani Urbani Urbani PUMC01

TCID50a of SARS-CoV 1.6 × 104b AC70: 103

AC22: 106

AC63: 106

7 × 104c 105

Mortality (%) Line 1: 100
Line 2: 100
Line 3: 100

AC70: 100
AC22: 0
AC63: 0

100 0

Survival days (p.i.) Line 1: 2–5
Line 2: 3–4
Line 3: 5–7

AC70: 4–8
AC22: n.a.d

AC63: n.a.

5–6 n.a.

aTCID50 50% tissue culture infective dose
bThe viral dosage used in the study, 2.3 × 104 plaque-forming units (PFU), was converted to the estimated TCID50 by the conversion TCID50 ≈ 0.7 PFU [71].
cThe viral dosage used in the study, 105 PFU, was converted to the estimated TCID50 by the conversion TCID50 ≈ 0.7 PFU [71].
dNot applicable
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vectors [59]. The plasmid containing hACE2 cDNA cod-
ing sequence was injected into pronuclei of zygotes from
the (C57BL/6J × C3H/HeJ) F1 (Table 1). Either C56BL/6
or BALB/c mice were used for backcrossing. Each mouse
line showed different expression levels of hACE2 mRNA.
The AC70 Tg line, which is supremely susceptible to
SARS-CoV infection, expressed a high level of hACE2
mRNA in overall organs (i.e., spleen, stomach, heart,
muscle, brain, kidney, lung, intestine, and liver) and
showed clinical illness, including lethargy, labored
breathing, persistent weight loss leading to immobility,
and 100% mortality within 4 to 8 days following

infection (Table 1) [59, 68]. Among the tissues exam-
ined, the lung and brain were the primarily affected or-
gans in the infected AC70 Tg mice and viral replication
in the lung and brain showed notably different kinetics.
While the viral titers reached the maximum level in the
lung 1 to 2 days p.i. then gradually decreased, the viral
titers in the brain were first detected on day 2, then rap-
idly increased on day 3 and remained at high levels until
the death of the host. The inflammatory cytokine levels
were correlated with the level of viral replication in the
lung and brain. Following intraperitoneal injection which
caused a low-level viremia in AC70 Tg mice, the virus

Fig. 2 The potential pathogenic events in the SARS-CoV-2 infected K18-hACE2 mouse model. This diagram shows the pathogenic events that
likely occur in SARS-CoV-2 infected hACE2 Tg mice using the examples of K18-hACE2 responses by SARS-CoV infection. K18-hACE2 Tg mice
showed severe lung injury and neuronal damage in CNS by SARS-CoV infection, which were associated with the viral replication levels in each
organ. The viral spike protein binds to the hACE2 expressed on neuronal cells or epithelial cells of the air tracks. The viral particles-hACE2
complex is internalized into cells. The virus replicates the viral RNA and generates the viral structure proteins to propagate themselves and infect
other cells again. The cell damages, apoptosis, and infiltrated inflammatory cells by SARS-CoV-2 infection cause the tissue damage along with the
cytokine and chemokine increases in the infected area, resulting in severe organ damages
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was detected in the brain, but not in the lung, suggesting
that the SARS-CoV could disseminate into the CNS by a
mechanism independent from the one of lung infection
[59]. Other Tg mice lines, AC22 and AC63, were used
to investigate resistance to lethality following SARS-CoV
infection as compared to AC70. Infected AC22 and
AC63 Tg mice recovered even though the mice suffered
from a severe clinical illness during the progression of
the disease [59, 68]. Although the hACE2 expression
levels in both the lung and brain are lower in AC22 than
in AC70, the pattern of viral yield and the pulmonary
pathologies in the lung following the SARS-CoV infec-
tion showed subtle dissimilarity between the two lines.
However, both viral replication and inflammatory re-
sponse in the brain of infected AC22 were significantly
lower than those of AC70. Another finding in this com-
parison study showed the T cell loss in AC70 Tg mice
was much more distinct than that in AC22 Tg mice,
which was similar to the severity of T cell loss correlated
with the poor outcome in the SARS-CoV and SARS-
CoV-2 infected patients [52, 76–80].

Hepatocyte nuclear factor-3/forkhead homologue 4(HFH4)-
ACE2 Tg mouse models
HFH4-ACE2 Tg mice, also known as B6J.Cg-Tg
(FOXJ1-ACE2)1Rba/Mmnc with airway-targeted overex-
pression of human ACE2, were generated by Menachery
et al. in 2016. The expression cassette, consisting of
HFH4 (FOXJ1) lung ciliated epithelial cell-specific pro-
moter elements and the coding region of ACE2 cDNA
in a pTG1 vector, was injected into the pronuclei of zy-
gotes from (C3H × C57BL/6) F1 (= C3B6F1) (Table 1).
The founder mice were crossed to C3B6, and the hACE2
expression in each mouse was confirmed by PCR. The
HFH4-ACE2 mice expressed hACE2 not only in the
lung but also in the brain, liver, kidney, and gastrointes-
tinal tract, indicating the broader organ distribution of
HFH4-mediated expressions than expected initially.
With SARS-CoV (Urbani strain) challenge, all HFH4-
hACE2 mice rapidly lost more than 20% bodyweight and
died within 4 to 5 days with robust viral replication in
both the lung and brain found at the endpoint (Table 1).
The anti-SARS human antibody 227.15 protected
HFH4-hACE2 mice from death by SARS-CoV infection.
These mice were used to evaluate the possibility of hu-
man infection and transmission of WIV1-CoV, which is
a SARS-like virus identified by metagenomics studies
and an isolated replication virus from the horseshoe bat
known to be an animal reservoir of SARS-CoV [69]. In
previous research, WIV1-CoV was revealed to have a
broad species tropism and use ACE2 orthologs. Also, it
could replicate at a low level in A549, a human lung
cancer cell line [81]. Furthermore, the robust WIV1-
CoV infection was confirmed in the well-differentiated

primary human airway epithelial (HAE) cell, meaning
that some SARS-like viruses which have not yet been
found, as well as WIV1-CoV, might not need an inter-
mediate species to infect humans. Therefore, it was crit-
ical to investigate the pathogenesis and observe
symptoms of WIV1-CoV infection in animal models ex-
pressing hACE2. Compared to SARS-CoV infection in
HFH4-hACE2 mice, WIV1-CoV infection showed atten-
uated symptoms, such as a lesser amount of weight loss
with delayed death in limited mice as well as lower viral
titer which contrasts the finding of a similar titer level
following infection in primary HAE cell culture. This
suggests that the WIV1-CoV spike protein can bind to
hACE2, but additional adaptations will possibly be re-
quired to cause the epidemic disease [69]. This example
demonstrates the additional use of hACE2 Tg mice for
validation of potential epidemical viral strains, showing
the beneficial impact of hACE2 Tg mice which can pro-
vide the knowledge needed for the prevention and man-
agement of future CoV outbreaks.

Mouse ACE2 promotor-driven hACE2 Tg mouse models
The hACE2 Tg mouse, which had the hACE2 gene intro-
duced into the mouse genome, was developed by Yang
et al. in 2007 [69]. The hACE2 cDNA was inserted into
the pEGFP-N1 plasmid and the hACE2 expression medi-
ated under mouse ACE2 promotor, resulting in the likeli-
hood of mimicking the human condition more closely.
After the verification of hACE2 expression, the fragment
containing the mouse ACE2 driving the hACE2 coding se-
quencing was injected into the pronuclei of the zygote
from ICR mice (Table 1). The hACE2 expression was ob-
served in the lung, heart, kidney, and intestinal tracts in
this hACE2 Tg model. In contrast to the previous hACE2
Tg mice models, including K18-hACE2, A70, and HFH4-
ACE2, although severe diffuse interstitial pneumonia and
broad extrapulmonary organ damage were seen [69], simi-
lar to that observed in some patients infected SARS-CoV
[82–84], these mice did not die by SARS-CoV infection
(Table 1). The reason for this milder disease progression
and recovery could be due to lower hACE2 expression
levels. Since the death rate of SARS in 2003 was about
10% [70] and that of COVID-19 is about 7% [2], this more
resistant hACE2 Tg mice, still with significant pathologic
symptoms, is useful in understanding the pathogenesis of
both SARS-CoV and SARS-CoV-2.

The potential contributions of hACE2 Tg mouse
models in the battle against COVID-19
Development of vaccines
Several vaccine candidates for SARS-CoV were shown to
induce neutralizing antibodies as well as being effective
in protecting young mice or hamsters from the viral
challenge [85–92]. The hACE2 Tg mouse, K18-hACE2,
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was used to test the protective ability of a recombinant
SARS-CoV which is deleted in envelope (E) protein
(rSARS-CoV-ΔE) or deleted in E and several group-
specific protein genes (rSARS-CoV-Δ[E,6-9b]) against
the SARS-CoV-mediated fatal respiratory disease. These
rSARS-CoVs showed protective effects against challenge
with SARS-CoV by inducing both anti-virus T cell and
antibody responses and improved survival rate [93]. Re-
cently, SARS-CoV-2 mRNA-1273, the inactivated
recombinant-spike protein of SARS-CoV-2, was under-
going testing in clinical phase I, open-label, dose-
ranging, clinical trial (NCT04283461) to mainly
determine the safety and efficacy [57]. Since the virus
can generate more subclasses, the efficacy, safety, host
immunization, and potential to deter viral replication of
SARS-CoV-2 should be evaluated in more vaccine candi-
dates. To accomplish this desperate need, use of a
hACE2 Tg mouse model will help to discover potential
vaccines with desirable properties, and move toward the
next phase of vaccine development.

Evaluation of the potential therapeutics
Several strong therapeutic candidates, most were
previously used for the treatment of viral disease
[94–97], have been rapidly applied to clinical trials
for COVID-19 based on their anti-viral effects vali-
dated in cultured cells [96, 97]. For instance, remde-
sivir (GS-5734), which has been recognized as a
broad-spectrum anti-viral drug against RNA viruses
[97], such as SARS and MERS-CoV [98], was shown
to inhibit SARS-CoV-2 viral infection in a human
liver cancer cell line (Huh-7) [97]. Remdesivir was
recently approved by the FDA for emergency use in
severe COVID-19 patients [99] and will further be
evaluated for efficacy when given to patients earlier
in their disease course. Currently, there are eight
clinical trials in progress in the USA (NCT04315948,
NCT04292730, NCT04280705, NCT04302766), China
(NCT04252664, NCT04257656), and France
(NCT04314817, NCT04315948) to assess the ex-
panded treatment approaches and potential combin-
ational treatments of remdesivir and to get the
approval from the FDA. Considering the complicated
and hidden pathogenic mechanisms and evolution of
SARS-CoV-2, an in vivo study should be simultan-
eously and immediately conducted to provide more
comprehensive data that can predict the therapeutic
and adverse responses in SARS-CoV-2 infected pa-
tients. The hACE2 Tg mice may provide highly
beneficial data, particularly that associated with the
severity of COVID-19, because clinical illness or
mortality cannot be investigated using cultured cells
or non-transgenic mice. Moreover, hACE2 Tg mice
can facilitate developing and evaluating the potential

therapeutic strategy targeting the hACE2-mediated
pathogenic pathways. The soluble recombinant hu-
man ACE2 (rhACE2) has been attracting attention as
a competitive interceptor that can bind to RBD of
the SARS-CoV or SARS-CoV-2 before the viral RBDs
attach to the full-length hACE2 which is bound to
the cell membrane [100]. Several in vitro studies
have shown that the soluble form of ACE2 blocked
the SARS-CoV replication in Vero-E6 cells [101,
102] and the extracellular domain of human ACE2
fused to human IgG1-Fc could neutralize the SARS-
CoV-2 [103]. If an appropriate form of rhACE2 can
be provided, it would be a new therapeutic com-
pound used to inhibit SARS-CoV-2 binding to ACE2
and to diminish viral infection and viral replication
in the host [100]. However, the beneficial effect of
rhACE2 has not yet been tested in animal studies or
human clinical studies; therefore, hACE2 Tg mice
would be a useful animal model that can expedite
the process of developing this new approach.

Elucidation of the pathogenesis
Subsequent to migration and mutation SARS-CoV-2 has
been evolving into subclasses. Tang et al. reported that two
major lineages (L-type and S-type) of SARS-COV-2 co-
exist by phylogenetic analysis of 103 genomes with SARS-
CoV-2. The S-type was indicated as the ancestral subclass,
and the L-type was characterized to have a higher fre-
quency than S-type [104]. The co-infection of these two
subclasses was observed in one patient (USA_2020/01/21.a,
GISAID ID: EPI_ISL_404253), but it was not clear whether
the co-infection increased the severity or not [104]. More
recently, three subclasses (i.e., A, B, and C subclasses) were
identified based on the distinguishable AA changes by
character-based phylogenetic network analysis of 160
SARS-CoV-2 genomes [105]. Understanding the pathogen-
esis of each viral subclass consisting of special residues de-
termining host affinity or disease severity is important for
developing vaccines and treatment. As described before,
the clinical symptoms in hACE2 Tg mice following SARS-
CoV infection were quite similar to that in patients. hACE2
Tg mice will potentially provide significant knowledge
about viral dissemination and pathogenic impact of SARS-
CoV-2 subclasses in infected hosts. Also, it will lead to es-
sential knowledge that supports further transgenic animal
models for enhancing or investigating the permissiveness
and infection of SARS-CoV-2 [106].

Validation of the risk factors associated with the severe
symptoms in COVID-19
In a previous study using mouse models, aged mice
have shown more severe pathological lesions and a
higher mortality rate than young mice following
SARS-CoV infection, and young mice required more
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mutations and passages than aged mice to produce
the mouse-adapted SARS-CoV strains [107–112]. Age
is known as one of the factors that determine disease
severity in SARS and COVID-19 [57, 113]. Therefore,
investigating the pathologic severity of SARS-CoV-2
associated with age in young and old hACE2 Tg mice
is immediately required to understand the difference
of symptoms in infected patients and establish a
disease-control strategy. Also, in COVID-19, most of
the patients with lethal symptoms were revealed to
have pre-existing medical comorbidities, such as pul-
monary disease, chronic kidney disease, diabetes mel-
litus, obesity (body mass index ≥ 30), cardiovascular
disease, and hypertension [114–119]. There have been
various animal models developed for investigating
these diseases including inbred strains of mice with
genetic manipulations that predispose them to disease
[120–123]. Other manipulations and environmental
exposures can be used to study the effects of comor-
bidities such as cigarette smoke- or drug (i.e., bleo-
mycin)-induced pulmonary disease [124, 125],
paraquat-induced acute renal failure [126], repeated
low-dose cisplatin treatment-induced chronic renal
failure [127], streptozotocin-developed type I diabetes
mellitus [128], and high fat/sucrose dites-induced in-
sulin resistance, which is closely linked with type II
diabetes melilitus, obesity, and cardiovascular disease
[129, 130]. The chemical/diet-induced disease
methods can be applied to hACE2 Tg mouse models
before infecting the SARS-CoV-2 to elucidate the as-
sociation between comorbidity and the symptoms or
pathogenesis of COVID-19. Moreover, the further de-
velopment of breeding together Tg mice that develop
comorbidities and express hACE2 will facilitate the
discovery of the impact and mechanism of each co-
morbidity on the severity of symptoms in COVID-19.
This knowledge will help us to be ready, prevent, and
protect people from an undesirable pandemic disaster
like COVID-19.

Conclusion
SARS-CoV-2 has a higher binding affinity to hACE2
than to that of other species, and the recent Cryo-
Electron microscopy studies demonstrate that it
showed even a higher affinity than SARS-CoV [131].
The transgenic mouse model that expresses hACE2
has been proven to mimic the symptoms of human
disease by SARS infection. We have comprehensively
reviewed the currently established hACE2 Tg mouse
models and the studies utilizing these mice. Also, ar-
guments were presented that show the urgent de-
mand for investigations of COVID-19 treatments and
prevention significantly require the use of hACE2 Tg
mice. In conclusion, along with the efforts in all

medical and scientific fields, the hACE2 Tg mice are
a critical translational animal model that would
greatly facilitate the deciphering of this pandemic dis-
ease and development of therapeutics and vaccines
against COVID-19.
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