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linked to lower disease-free survival.

affecting changes in methylation patterns.

Background: Chromosomal inversions are structural genetic variants where a chromosome segment changes its
orientation. While sporadic de novo inversions are known genetic risk factors for cancer susceptibility, it is unknown
if common polymorphic inversions are also associated with the prognosis of common tumors, as they have been
linked to other complex diseases. We studied the association of two well-characterized human inversions at 17g21.31
and 8p23.1 with the prognosis of lung, liver, breast, colorectal, and stomach cancers.

Results: Using data from The Cancer Genome Atlas (TCGA), we observed that inv8p23.1 was associated with overall
survival in breast cancer and that inv17g21.31 was associated with overall survival in stomach cancer. In the meta-
analysis of two independent studies, inv17g21.31 heterozygosity was significantly associated with colorectal disease-
free survival. We found that the association was mediated by the de-methylation of cg08283464 and cg03999934, also

Conclusions: Our results suggest that chromosomal inversions are important genetic factors of tumor prognosis, likely
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Introduction

Chromosomal inversions are structural genetic variants
where a chromosome segment changes its orientation
with respect to a reference genome. Chromosomal inver-
sions are either sporadic or polymorphic. Sporadic inver-
sions are infrequent new mutations that have been linked
to cancer susceptibility [1-3] and progression [4]. For in-
stance, a sporadic inversion in chromosome 16 is a known
precursor of leukemia (reviewed in [5]). By contrast, poly-
morphic inversions are common variants in the popula-
tion. Ancient non-recurrent inversions define divergent
haplotypes, each linked to an inversion status, as inverted
and standard chromosomes do not recombine [6]. Based
on this observation, different methods on nucleotide vari-
ation data have been implemented to call inversions status
from haplotype differences [7, 8]. Thus, the re-analysis of
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existing GWAS data and bioinformatics tools have
allowed the study of the role of polymorphic inversions in
complex diseases, such as asthma and obesity [9], neuroti-
cism [10], and ovarian cancer [11]. Since no study has
reported associations with cancer prognosis, we asked the
extent to which polymorphic inversions are also related to
the prognosis of common cancers that included lung,
liver, stomach, breast, and colorectal.

We studied the role of the inversions at 8p23.1 and
17q21.31 in cancer prognosis as these two inversions are
well-characterized and can be genotyped to high accur-
acy using SNP array data [6, 8, 12]. Gene expression and
methylation data analyses were performed to assess the
transcriptomic and epigenomic effects of inversions and
their potential effects on prognosis. Mediation analyses
were carried out to determine whether gene expression
or DNA methylation are suitable mediators of the asso-
ciation between inversions and cancer prognosis.
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Materials and methods

Inversion calling on TCGA

We obtained TCGA SNP data in Birdseed format from
NCI Genomic Data Commons (GDC) legacy archive
[13]. We converted the data to VCF format and mapped
them to the human assembly hgl9 using birdseed2vcf
[14]. We imputed the SNPs with the Michigan server
[15], using HRC Version rl.1 2016 as the reference and
SHAPEIT v2.r790 as the phasing algorithm. We used
peddy [16] to select individuals detected as European
with a confidence higher than 0.9. Inversion genotypes
for inv8p23.1 and inv17q21.31 were obtained using scor-
elnvHap that uses SNP information on inversion regions
to call inversion genotypes [8, 17].

CRCGEN

The CRCGEN study combines data of three case-control
studies performed in Spain. The first study was per-
formed in the University Hospital of Bellvitge, L'Hospita-
let, Barcelona, and recruited 304 incidents, pathology
confirmed, colorectal cancer (CRC) cases and 293 age
and sex frequency-matched hospital controls during the
period 1996-1998. The second study, performed in the
same hospital during the period 2007-2015, included a
total of 324 cases and 376 population controls. The third
study was conducted in Hospital of Ledn, Le6n, during
2008-2013. A total of 325 incident CRC cases and 407
population controls were included. Written informed
consent was required from all participants. Each Hospital’s
ethics committees (Bellvitge and Ledén) approved the
protocols of the study. The three studies contributed to
CORECT consortium, so genotyping and quality control
was performed simultaneously for all subjects.

Survival analysis

We selected the cancers with the highest worldwide
mortality [18]: lung, liver, colorectal, stomach, and
breast. In TCGA, these cancers corresponded to LUAD
(lung adenocarcinoma), LUSC (lung squamous cell
carcinoma), LIHC (liver hepatocellular carcinoma), COAD
(colon adenocarcinoma), READ (rectum adenocarcin-
oma), STAD (stomach adenocarcinoma), and BRCA
(breast invasive carcinoma). We considered LUAD and
LUSC as two independent cancers and COAD and READ
as one single cancer (i.e., colorectal). We only considered
female samples for breast cancer associations. We down-
loaded TCGA clinical data using curatedTCGAData [19].
We fitted survival and disease-free-survival (i.e., recur-
rence) Cox proportional hazards models. Inversion geno-
types for inv17q21.31 and inv8p23.1 were considered as
risk factors under four different genetic models: (1)
additive (Std-Std, 0; Std-Inv, 1; Inv-Inv, 2); (2) domin-
ant (Std-Std, O0; Std-Inv, 1; Inv-Inv, 1); (3) recessive
(Std-Std, 0; Std-Inv, 0; Inv-Inv, 1), and (4) overdominant
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(Std-Std, 0; Std-Inv, 1, Inv-Inv; 0). We accounted for mul-
tiple testing using Bonferroni correcting for four genetic
models, considering significant p values that were lower
than 1.19 x 107>, For all tumors, we tested a univariate
and a multivariate model adjusted for age, gender, patho-
logic stage (stage I, stage II, stage III, and stage IV), and
the first four genome-wide principal components inferred
by peddy [16].

Using the CRCGEN study, we tested the replication of
the significant associations found for colorectal cancer.
We genotyped inversions using scorelnvHap on 760
patients with complete information on the selected co-
variates. We fitted a frailty Cox proportional hazard
model for the significant associations previously found,
adjusting for age, gender, pathologic stage, cancer site,
and recruitment city as random effect to control for pos-
sible confounding related to recruiting process. The
asymptotic power based on an approximate variance
formula implemented in the survSNP R package [20]
was used to estimate the power of replicating the in-
creased risk of colorectal recurrence and inversion
17q21.31 assuming an additive model (overdominant is
not implemented in the package). We meta-analyzed the
results of TCGA and CRCGEN models using metafor R
package [21].

Gene expression analysis

We downloaded the GDC harmonized version of gene
expression data using TCGAbiolinks [22]. We merged
COAD and READ datasets and we selected samples
from primary tumor, with reported pathologic stage and
with inversion status inferred by scorelnvHap. We re-
moved genes with less than ten counts in more than 1%
of the samples and we transformed count values to log,
CPMs using voom [23]. The final dataset contained 477
individuals and 27,291 genes, where we tested the asso-
ciation between gene expression and inv17q21.31 using
robust linear models and redundancy analysis (RDA)
[24], as implemented in MEAL [25]. Both models in-
cluded age, gender, pathologic stage, PC genetic compo-
nents, and 53 surrogate variables as covariates. We
accounted for multiple testing in robust linear model
analysis using Benjamini-Hochberg method [26]. The re-
sults were mapped to gene coordinates in human assem-
bly hg19 using biomaRt [27, 28].

DNA methylation analysis

We downloaded the GDC harmonized version of DNA
methylation data using TCGAbiolinks. We merged
COAD and READ datasets and we selected samples
from primary tumor. We removed probes with SNPs as
defined in the minfi package [29], in sexual chromo-
somes and likely to cross-hybridize [30]. The final data-
set contained 265 individuals and 350,879 CpGs. MEAL
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package [25] was used to associate inv17q21.31 with
DNA methylation. We fitted robust linear models to de-
tect differentially methylated probes (DMP); we also
used redundancy analysis in the inverted region and
three methods to detect differentially methylated regions
(DMRs): bumphunter [31], blockFinder [29], and
DMRcate [32]. All the models included age, gender,
pathologic stage, PC genetic components, and 37 surro-
gate variables as covariates. We accounted for multiple
testing in robust linear model analysis using Benjamini-
Hochberg adjustment. We reported the genes mapped
to CpG using Release 93 of ENSEMBLE nomenclature.

Mediation analysis

We evaluated whether gene expression or DNA methyla-
tion were mediators of the association between inversion
inv17q21.31 and colorectal recurrence. We accounted for
technical bias on gene expression and DNA methylation
by computing residuals, removed from the effect of surro-
gate variables. We evaluated whether gene expression me-
diated the effect of inv17q21.31 on tumor recurrence
using the genes previously associated with the inversion.
Four hundred seventy-seven samples were available with
gene expression and clinical data. The mediation test in-
cluded a generalized linear model (gene vs inversion) and
a regression parametric model (tumor recurrence vs inver-
sion + gene), both adjusted for age, sex, pathologic stage,

Table 1 Individual characteristics in TCGA datasets
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and the first four genome-wide principal components. We
run 1000 permutations to compute the significance of the
mediation and used the same method for the mediation of
the association between inv17q21.31 and disease-free sur-
vival. We tested whether the CpGs affected by the inver-
sion associated with tumor recurrence, using a Cox
proportion hazards regression model. We selected those
CpGs associated with tumor recurrence either in a crude
model or after adjusting for age, sex, pathologic stage, and
the first four genome-wide principal components (p value
< 0.05). We performed mediation tests with the mediation
R package [33].

Results

Chromosomal inversions associate with overall and
disease-free cancer survival

Table 1 shows the patients characteristics included in
the study. We did not find an association between
chromosomal inversions at 8p23.1 and 17q21.31 and
general patients’ features.

We tested the association of inv8p23.1 and inv17q21.31
with overall survival using an unadjusted model (Table 2).
We observed that the inverted homozygous for inv8p23.1
associated with lower breast cancer survival (HR 2.01, p
value 2.7 x 107%) but with higher stomach cancer survival
(HR 0.42, p value 3.3 x 107%), whereas standard homozy-
gous for inv17q21.31 associated with low survival of

Lung? (n = 381) Lung2 (n = 399)

Liver (n = 140)

Colorectal (n = 470) Stomach (n = 240) Breast (n = 734)

Inv8p23.1
Std-Std 59 (15.5%) 81 (20.3%) 21 (15.0%) 88 (18.7%) 55 (22.9%) 128 (17.5%)
Std-Inv 205 (53.8%) 207 (51.9%) 83 (59.3%) 219 (46.6%) 115 (47.9%) 376 (51.2%)
Inv-Inv 117 (30.7%) 111 (27.8%) 36 (25.7%) 163 (34.7%) 14 (29.2%) 230 (31.3%)
Inv17g21.31
Std-Std 225 (59.1%) 244 (61.1%) 83 (59.3%) 294 (62.7%) 158 (65.8%) 453 (61.7%)
Std-Inv 140 (36.7%) 128 (32.1%) 49 (35.0%) 162 (34.5%) 68 (28.3%) 250 (34.1%)
Inv-Inv 16 (4.2%) 27 (6.8%) 8 (5.7%) 14 (2.97%) 14 (5.8%) 31 (4.2%)
Age (years) 67 (33-88) 69 (40-90) 65 (17-85) 69 (31-90) 67 (41-90) 60 (26-90)
Sex
Women 205 (53.8%) 99 (24.8%) 68 (48.6%) 225 (47.9%) 93 (38.8%) 734 (100%)

Men 176 (46.2%)

Tumor stage

300 (75.2%)

Stage | 210 (55.1%) 198 (49.6%) 67 (47.9%)
Stage Il 87 (22.8%) 129 (32.3%) 36 (25.7%)
Stage Il 64 (16.8%) 66 (16.6%) 34 (24.3%)
Stage IV 20 (5.3%) 6 (1.5%) 3 (2.1%)
Follow-up time (days) 609 (0-7248) 671 (0-4765) 662 (0-3478)

72 (51.2%)

245 (52.1%) 147 (61.3%) 0 (0%)
88 (18.7%)
176 (37.4%)
138 (29.4%)
68 (14.5%)

648 (0-4502)

35 (14.6%)
68 (28.3%)
112 (46.7%)
25 (10.4%)
415 (0-3720)

129 (17.6%)
404 (55.0%)
179 (24.4%)
22 (3.0%)

838 (0-8605)

Continuous variables are described with median and range. Categorical variables are described with counts and the percentages of each category
Lung1 LUAD (lung adenocarcinoma), Lung2 LUSC (lung squamous cell carcinoma), Liver LIHC (liver hepatocellular carcinoma), Colorectal COAD + READ (colon
adenocarcinoma), Stomach STAD (Stomach adenocarcinoma), Breast BRCA (breast invasive carcinoma)
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Table 2 Hazard ratios (HR) of overall survival using Cox regression models

Tumor inv8p23.1 inv17g21.31
Std-Std Std-Inv Inv-Inv p value Std-Std Std-Inv Inv-Inv p value

Lung1 1.10 (0.80-1.50) 0.55 0.78 (0.55-1.12) 0.18
Lung2 1 1 0.96 (0.65-1.42) 0.84 1 1 0.72 (0.35-1.47) 037

Liver 1 1 0.84 (0.45-1.55) 0.58 1 0.74 (0.42-1.30) 1 0.30
Colorectal 1 0.68 (0.38-1.19) 1 0.18 1 0.74 (0.40-1.36) 1 0.33
Stomach 1 1 042 (0.18-0.93) 33x107 1 2.19 (1.20-3.99) 2.19 (1.20-3.99) 1.1x 107
Breast 1 1 2.00 (1.27-3.16) 26 %1077 1.34 (0.93-1.94) 0.12

The results are shown for the best genetic model for each inversion in each tumor. Associations in italics were nominally significant (p value < 0.05). In the
additive model, HR corresponds to each inverted allele. For the other models, HR was computed using Std-Std as reference

Lung1 LUAD (lung adenocarcinoma), Lung2 LUSC (lung squamous cell carcinoma), Liver LIHC (liver hepatocellular carcinoma), Colorectal COAD + READ (colon
adenocarcinoma), Stomach STAD (stomach adenocarcinoma), Breast BRCA (breast invasive carcinoma)

stomach cancer (HR 2.19, p value 1.1 x 107%). After
adjusting for sex, age, tumor stage, and the first four gen-
etic principal components, we found that the association
between inv8p23.1 and breast cancer survival further in-
creased (HR 2.55, p value 1.4 x 107%), likewise the associ-
ation between inv17q21.31 and stomach cancer survival
(HR 326, p value 58 x 10* (Additional file 1,
Supplementary Tables 1-2). However, the adjustment re-
moved the significant association between inv8p23.1 and
stomach cancer (HR 0.62, p value 0.14) (Additional file 1,
Supplementary Table 2). Note that all reported associa-
tions were statistically significant under Bonferroni thresh-
old (1.19 x 107%). Multivariate models confirmed that
pathologic stage and age are strong predictors of overall
survival (Additional file 1, Supplementary Tables 1-6).
We then tested the association between inv8p23.1 and
inv17q21.31 with disease-free survival (Table 3). Only one
significant association was significant, between heterozy-
gous individuals for inv17q21.31 and decreased tumor
disease-free survival in colorectal cancer (HR 1.67, p value
1.6 x 107?) (Fig. 1, Table 3). After adjusting for age, sex,
tumor stage, and the first four genetic principal compo-
nents, the association was on the limit of Bonferroni cor-
rection (HR 1.81, p value 7.2 x 107°) (Additional file 1,

Supplementary Table 7). Such overdominant model is
plausible as inversion heterozygous affect chromosome
pairing which can lead to genomic alterations [34]. In
addition, the multivariate models confirmed that the
pathologic stage is a strong predictor of disease-free sur-
vival (Additional file 1, Supplementary Tables 7-12).

We then tested the replication of inv17q21.31 association
using the colorectal CRCGEN study. We had a 99.5%
power to detect a HR = 1.81 for recurrence assuming a =
0.05, a 0.24 inversion allele frequency, 0.21 recurrent event
rate, and an additive model. Participants of this study had
different characteristics than TCGA patients (Additional
file 1, Supplementary Table 13). We observed, in a fully ad-
justed model (age, sex, tumor stage, and patients’ city), that
while heterozygous individuals for inv17q21.31 decreased
tumor disease-free survival, the association was not statisti-
cally significant (HR 1.16, p value 0.33) (Additional file 1,
Supplementary Table 14). However, the association was sig-
nificant in the meta-analysis of TCGA and CRCGEN stud-
ies (HR 1.34, p value 2.3 x 1072 (Fig. 1). We further asked
whether the observed overdominance of invl7q21.31 in
colorectal disease-free survival was supported by functional
associations with gene expression and DNA methylation in
the TCGA study.

Table 3 Crude Cox regression models between chromosomal inversions and disease-free survival

Tumor inv8p23.1 inv17g21.31
Std-Std Std-Inv Inv-Inv p value Std-Std Std-Inv Inv-Inv p value

Lung1 0.78 (061-1) 0.05 0.88 (0.67-1.16) 037

Lung2 1 0.82 (0.52-1.28) 0.82 (0.52-1.28) 0.38 1 1 049 (0.2-1.2) 0.12

Liver 1 1 1.01 (0.61-1.68) 0.96 1 1.13 (0.74-1.74) 1.13 (0.74-1.74) 0.57
Colorectal 1 0.86 (0.51-1.44) 0.86 (0.51-1.44) 0.56 1 1.67 (1.1-2.53) 1 157 x 1072
Stomach 1 1 0.79 (044-1.4) 042 1 0.98 (0.57-1.68) 1 0.93

Breast 1 0.66 (041-1.04) 1 0.08 1 1 2.01 (0.81-4.99) 0.13

The results are for the best genetic model for each inversion in each tumor. Associations in italics were nominally significant (p value < 0.05). In the additive
model, HR corresponds to each inverted allele. For the other models, HR was computed using Std-Std as the reference
Lung1 LUAD (lung adenocarcinoma), Lung2 LUSC (lung squamous cell carcinoma), Liver LIHC (liver hepatocellular carcinoma), Colorectal COAD + READ (colon

adenocarcinoma), stomach: STAD (stomach adenocarcinoma), Breast BRCA (breast invasive carcinoma)
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inv17g21.31 effect on colorectal disease-free survival is
more likely mediated by DNA methylation than by gene
expression
We aimed to find a molecular mechanism to explain the ef-
fect of inv17q21.31 on colorectal disease-free survival using
TCGA data. To this end, we tested two different hypoth-
eses: (1) a change in the expression of a gene mediates the
association between the inversion and disease-free survival
and (2) specific changes in DNA methylation, which may
regulate the expression of several genes and mediate the as-
sociation between the inversion and disease-free survival.
Heterozygous for inv17q21.31 were associated with
significant differences in the expression of 12 genes
within inv17q21.31 region (Additional file 1, Supplemen-
tary Table 15) and explained 10% of the gene expression
variability (Additional file 1, Supplementary Figure 2). At
genome-wide level, inversion inv17q21.31 changed the
expression of another five genes (Additional file 1, Sup-
plementary Table 15). However, none of the genes af-
fected by the inversion mediated the association between
inv17q21.31 and colorectal disease-free survival.
Heterozygous for inv17q21.31 were associated with
significant changes in methylation of 11 CpGs inside the

inversion region (Additional file 1, Supplementary Table
16). However, the CpGs only explained 1% of
methylation variability (Additional file 1, Supplementary
Figure 3). Significant methylated regions (DMRs) in
inv17q21.31 were also detected with Bumphunter and
DMRcate for inverted heterozygous (Additional file 1,
Supplementary Tables 17-18). At genome-wide level,
inv17q21.31 changed the methylation of other 87 CpGs
in different chromosomes (Additional file 1, Supplemen-
tary Table 16). We found that six of these CpGs also as-
sociated with disease-free survival. We then tested the
mediation of these six CpGs in the association between
the inversion and disease-free survival and found two
CpGs with significant mediation effects: cg08283464 me-
diated a 15.0% of the association (p value, 0.048) and
€g03999934 a 20.7% (p value, 0.032). In particular, both
CpGs had lower methylation in heterozygous individuals
(Fig. 2a, Additional file 1, Supplementary Table 16), con-
sistent with the observation that lower methylation
values were associated to lower tumor disease-free sur-
vival (HR 0.015, p value 0.017 for cg08283464; HR 0.034,
p value 9.9-107* for ¢g03999934) (Fig. 2b, Additional file
1, Supplementary Table 19).
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Discussion

We found that chromosomal inversions at 8p23.1 and
17q21.31 affect tumor prognosis in breast, stomach, and
colorectal cancer. These new biomarkers should be fur-
ther considered in prognosis assessment in addition to
the SNPs associated with breast and stomach cancer sur-
vival [35—-37] and with colorectal cancer recurrence [38,
39] and in addition to germline CNVs associated with
breast and colorectal cancer prognosis [40—42]. As such,
further studies need to evaluate the increased power of
polygenic scores of prognosis and susceptibility given by
the inclusion of these inversions [43]. The inversions
have the potential to improve polygenic scores by
including common genomic structural variants and by
specifically including variants associated with progno-
sis [44].

Inversions inv8p23.1 and inv17q21.31 were associated
with overall survival based on dominant and recessive
genetic models. Both inversions have already been asso-
ciated with different diseases. inv8p23.1 has been associated
with system systematic lupus [45, 46], neuroticism [10],
autism [47], schizophrenia [47], and underweight [12], and
inv17q21.31 has been associated with Parkinson [48—
51], neurodegenerative tauopathies [52, 53], Alzheimer’s dis-
ease [54], neuroticism [10], autism [47], schizophrenia [47],
or response to corticosteroids in asthma [55].

Inversion heterozygous at 17q21.31 predicted lower
disease-free survival in colorectal cancer. While over-
dominance is uncommon for SNPs, inversion heterozy-
gous have shown deleterious effects on complex
phenotypes, such as congenital ichthyosis [56], where
non-allelic homologous recombination (NAHR) that
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reverts the effect of detrimental mutations is impaired in
inverted heterozygous. A similar mechanism could ex-
plain the worse colorectal cancer prognosis of inverted
heterozygous. Another mechanism for the overdominant
effect of the inversion could be linked to the deletion of
the region during mitosis, as inverted heterozygous favor
the generation of such chromosome rearrangements
[34]. Further research is needed to elucidate the specific
mechanisms for the lower prognosis of inv17q21.31
heterozygous.

In this work, we tested two possible mediators be-
tween inversion inv17q21.31 and disease-free survival:
(1) expression changes in specific genes and (2) DNA
methylation changes in specific CpGs, which could cor-
relate with the expression of several genes. Our results
support DNA methylation changes as the more likely
mediators. We did not observe a mediation effect of
these genes on the overdominance of inv17q21.31 on
disease-free survival, although inv17q21.31 heterozygous
were associated with gene expression on colorectal tu-
mors, in line with previous studies in blood and brain
[53, 57-60]. However, we cannot discard that the overall
mediatory effect is given by the additive contribution of
small independent effects of each gene, for which there
is lack of statistical power. On the other hand, the asso-
ciation between inv17q21.31 heterozygous with exten-
sive genome-wide changes in DNA methylation on
colorectal tumor tissue underlines the genome-wide role
of the inversion, already observed for genome-wide gene
expression changes in blood [53], and global recombin-
ation [61]. We found that the two CpGs that partially
mediated the effect of inv17q21.31 on colorectal disease-
free survival are intergenic and have the potential to
affect the transcription of several genes. While DNA
methylation clearly affects colorectal recurrence [62, 63]
and changes in DNA methylation have also been ob-
served to mediate the effect of inv17q21.31 on diseases
[53], the effect of inv17q21.31 in global epigenetic pat-
terns needs further investigation.

In conclusion, we offer novel evidence on the effect of
common inversion polymorphisms on the tumor prog-
nosis of common cancers, indicating underlying epige-
nomic mechanisms linking inv17q21.31 to colorectal
disease-free survival. Although more research is needed
to validate the associations between inv17q21.31 hetero-
zygosity and colorectal cancer disease-free survival, we
show significant functional correlations that support our
observations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540246-019-0242-2.

[ Additional file 1. Supplementary Figures and Tables (.pdf). ]
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