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Abstract

Neurodevelopmental disorders (NDDs) represent a growing medical challenge in modern societies. Ever-increasing
sophisticated diagnostic tools have been continuously revealing a remarkably complex architecture that embraces
genetic mutations of distinct types (chromosomal rearrangements, copy number variants, small indels, and nucleotide
substitutions) with distinct frequencies in the population (common, rare, de novo). Such a network of interacting
players creates difficulties in establishing rigorous genotype-phenotype correlations. Furthermore, individual lifestyles
may also contribute to the severity of the symptoms fueling a large spectrum of gene-environment interactions that
have a key role on the relationships between genotypes and phenotypes.
Herein, a review of the genetic discoveries related to NDDs is presented with the aim to provide useful general
information for the medical community.
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Introduction
Neurodevelopment is the biological process resulting in
the development and maturation of the nervous system.
In humans, the process starts at the third week of
embryonic growth with the formation of the neural tube
[1–5]. From the ninth week onward, the brain orderly
maturates and acquires its typical structure, under a
tightly orchestrated chain of events that includes abundant
cell proliferation, migration, and differentiation [1, 4, 5].
Any disruption to such orderly and complex chain of
events may lead to dysfunctional brain development, and
consequently to a neurodevelopmental phenotype. Under
the designation neurodevelopmental disorders (NDDs)
falls a group of complex and heterogeneous disorders
showing symptoms associated to abnormal brain develop-
ment that may give rise to impaired cognition, communi-
cation, adaptive behavior, and psychomotor skills [6–8].

NDDs include, for example, autism spectrum disorder, in-
tellectual disability, attention deficit hyperactivity disorder,
schizophrenia, and bipolar disorder [7, 9, 10]. The pre-
valence of these disorders constitutes a serious health
problem in modern days. Previous reviews in distinct po-
pulations indicated a median global estimate of 62/10,000
for autism [11], 10.37/1000 for intellectual disability
[12], and a median lifetime prevalence of 4/1000 for
schizophrenia [13].
Multiple causes have been associated with NDDs,

including genetic, environmental, infectious, and trau-
matic, among others, which in general do not operate
alone but instead interacting between each other [6].
Importantly, the co-occurrence of distinct NDD entities
has been often reported in the literature (e.g., [14])
suggesting the existence of shared underlying biological/
cellular mechanisms [15, 16].
This review intends to focus on the molecular

mechanisms associated with the most common neuro-
developmental illnesses, for which the precise etiology
remains still largely unknown, but yet the genetic
component has been increasingly deciphered with the
massive sequencing of genomes of affected individuals.
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Gene/variant discovery by genome/exome screenings
Although the genetic etiology of NDDs is far from being
completely known, significant advances have been made
in the last years, achieved hand-in-hand with progresses
in ascertaining specific biological pathways underlying the
molecular mechanisms of these illnesses. The current
mutational spectrum of NDDs includes many hundreds of
genes related to neurodevelopmental pathways such
as those associated with chromatin remodeling, synaptic
function, and transcriptional regulation [17–19]. There is
convincing evidence for the huge genetic heterogeneity
not only within but also between and across different
NDDs, once it is documented a considerable overlap of
genes involved in more than one NDD, and the number of
known causative genes continues to increase.
Whole exome sequencing (WES) has revealed to be

among the most useful approaches in the identification of
novel causal mutations [20–32] in particular WES-Trio
(proband and parents) studies due to be based on the
comparison of the genotypes of an affected child and their
parents, allowing thus the identification both of de novo
mutations as inherited risk variants with variable pene-
trance. The success of the WES approach was clearly
demonstrated in a recent study based in consanguineous
families with NDDs, in which 14 new candidate genes
not previously associated with NDD disorders were
identified (GRM7, STX1A, CCAR2, EEF1D, GALNT2,
SLC44A1, LRRIQ3, AMZ2, CLMN, SEC23IP, INIP,
NARG2, FAM234B, and TRAP1) all in patients who
were homozygous for truncating mutations in each of
the genes [31]. Importantly, the same study allowed the
identification of a de novo dominant truncating muta-
tion at the PARD6A (p.Arg312Term), a gene never yet
associated with any human disease but whose mouse
homolog had been demonstrated to control glial-guided
neuronal migration [33]. Although future studies still need
to address whether PARD6A plays a similar functional role
present in humans, this illustrates the importance of WES
in revealing new candidate genes that may have a critical
role in the neurodevelopment.
Intronic mutations can also be identified through

WES. In 2017, Prchalova et al. [34] reported on an adult
female with severe intellectual disability, epilepsy, and
autistic features among other symptoms in whom the
WES analysis led to the detection of an intronic muta-
tion in the SYNGAP1 gene that was experimentally dem-
onstrated to interfere with mRNA splicing. SYNGAP1
encodes the Ras/Rap GTP-activating protein, which has
a critical role in synaptic function [35, 36] and has been
associated with NDDs [37].
Along with WES, whole genome sequencing (WGS) is

further revealing the role of non-coding mutations in
the development of NDD phenotypes, adding an extra
dimension to the already complex etiology of these

disorders [38–41]. Very recently, Short et al. [41] esti-
mated that pathogenic de novo variants in fetal brain
regulatory elements account for about 1–3% of exome-
negative NDD probands. Therefore, WGS should be
considered whenever exome analyses do not provide evi-
dence regarding putative causative mutations in NDD
phenotypes.

Polymorphic variants and risk assessment
It is widely acknowledged that common genetic varia-
tions play an important role in the majority of complex
disorders; actually, both rare and common alleles can
contribute towards disease susceptibility [42]. Usually, vari-
ants with high frequency in the general population confer
low relative risk [43, 44] while rare alleles highly penetrant
may confer high risk [44]. Similarly to what is commonly
found in other complex genetic disorders, the risk of devel-
oping NDDs seems to be highly influenced by the com-
bined effect of common variants [45]. Up to now,
thousands of common low-risk genetic variants that col-
lectively can contribute to NDD susceptibility have been
described [46]. Although the specific common risk alleles
may differ between distinct NDDs, given their overall rele-
vance here, we selected two single nucleotide polymor-
phisms (SNPs), highly polymorphic and showing replicated
evidence of being associated with NDDs [47–51] to dissect
their patterns of population distribution. In Fig. 1 is plotted
the frequency of the assumed risk allele at each SNP across
five major human populations.
The rs12704290 is an intronic variant located at

GRM3, the gene that encodes the glutamate metabo-
tropic receptor 3 involved in the glutamatergic neuro-
transmission. At this position, the assumed risk allele is
rs12704290-G, which has been associated with a signifi-
cant increased risk to schizophrenia [48, 50]. This allele
is highly frequent across the five major human popula-
tions (Fig. 1), reaching the highest frequency in Africans
(0.976) whereas the lowest is typically observed in
Europeans (0.872).
The other common variant, rs7794745, is localized

in the CNTNAP2 gene, which encodes a neurexin
family protein involved in cell-cell adhesion [53]. The
allele rs7794745-T was previously associated with an
increased risk of developing autism spectrum disorder
[47, 49, 51] and is highly frequent in all human popu-
lations (Fig. 1). The presence of risk alleles showing
high frequencies in different human populations led
to the question on whether they were ancestral or de-
rived alleles. To find the answer, we investigated
which allele was present in the homologous positions
in the available orthologous primate sequences using
sequences available at the Ensembl project [54]. Inter-
estingly, the two risk alleles (GRM3 rs12704290-G
and CNTNAP2 rs7794745-T) were the ancestral
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configurations, a finding that likely explains the
worldwide high frequencies both reach. According to
di Rienzo and Hudson [55], cases in which the ances-
tral alleles contribute to increase risk to common dis-
eases or disease-related phenotypes, whereas the
derived alleles are protective, may have an evolution-
ary explanation whereby the ancestral alleles mainly
reflect ancient adaptations of ancient human popu-
lations, but due to the environmental and lifestyle
changes suffered in modern populations, such an-
cestral alleles become now variants that increase the
risk of common diseases.

Variants in chromatin-modifying/remodeling genes
The synaptic function may be influenced by many fac-
tors, among which are changes in chromatin dynamics
caused by the disruption of a number of highly con-
served genes [18]. Accordingly, chromatin-remodeling
genes have been frequently reported in gene ontology
analyses of data retrieved from WGS involving complex
NDDs. For instance, CHD2, CHD7, and CHD8, three
genes encoding chromodomain helicase DNA-binding
(CHD) proteins that modulate chromatin structure,
regulate gene expression, and play several other import-
ant roles, were previously linked to neurodevelopmental
disorders such as intellectual disability [56]. Very re-
cently, Kikawwa et al. [57] discussed the role played by
the product of PAX6 gene—Pax6, a chromatin modu-
lator, in autism, reinforcing the importance of chromatin
alterations in NDD genes.

Clinical relevance of de novo mutations
De novo mutations are non-inherited sporadic mutations
that arise either in the germline or in early embryonic
development. As so, they do not conform to some rules of

Mendelian inheritance, rendering more difficult to validate
the prediction of their functional effect. When de novo
mutations are associated with a clinical phenotype in a
person without family history of a given condition, they
can contribute to sporadic cases of the disease, including
NDDs [58]. The de novo mutational rate of the human
genome is approximately 1–3 × 10− 8 per base per ge-
neration [19, 59, 60] being well known that this rate is
influenced by several factors, among which is the parental
age [61]. The number of de novo mutations associated
with NDDs has increased due to the strong investment in
large-scale genetic screenings (exonic or genomic) of
patients, which facilitate the identification of all types of
molecular lesions as copy number variants (CNVs), indels,
and mutations that cause gene disruption (missense,
frameshift, and loss of splice site) [8, 62–68]. These
spontaneous mutations were often found in candidate
protein-coding genes with a high degree of haploinsuffi-
ciency or in regulatory elements involved in alternative
splicing, in transcriptional regulation (enhancer and pro-
moter), and in conserved non-coding sequences [41]. For
example, in autistic patients, several de novo mutations
were independently identified in the autism-associated
genes ADNP, ARID1B, CHD8, and SYNGAP1 [18, 69–71]
revealing a likely deleterious effect. De novo mutations
have also been identified in GATAD2B [72], SCN2A [73],
and FBXO11 [74] genes associated to intellectual dis-
ability, and in PTPRG, TGM5, SLC39A13, BTK, and
CDKN3 linked to schizophrenia [64].
Some mutations overlap distinct neurodevelopmental

disorders [14, 75]. Accordingly, a WES-Trios study with
schizophrenic patients conducted by McCarthy et al.
[76] suggested a shared genetic etiology between schizo-
phrenia, autism, and intellectual disability. Although the
complete set of genes involved in NDD is far being from

Fig. 1 Risk allele frequency in five populations for two single nucleotide polymorphisms (SNPs) found to be associated to increased risk of
neurodevelopmental disorders [47–51]. Data extracted from 1000 Genomes Project Phase 3 [52]
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fully characterized, the recurrent identification of de
novo mutations in a shared set of genes may allow
further clarification and delineation of the molecular path-
ways that underlie NDDs. Also, experimental/functional
validation of the identified de novo mutations is essential
to separate disease-causing alleles from neutral variation.

Genetic interaction
Genetic interaction (or epistasis) between genes or within
the same gene is a major determinant of genotype-
phenotype correlations [77–83]. The net result of distinct
combinations of variants can result in distinct severities of
the disease. Epistatic interactions between alleles are
known for some Mendelian diseases revealing the inter-
play between mutations and polymorphisms which result
in distinct functional outcomes [84, 85]. In what concerns
the genetically heterogeneous neurodevelopmental dis-
orders, the impact of the interaction between distinct
alleles within the same locus or between interacting loci
seems now to be giving its first steps. Evidence is
emerging on intermolecular epistasis in autism spectrum
disorders [86] regarding intramolecular and intermolecu-
lar epistasis between variants in the SHANK2 family that
were very recently documented [87]. This is in accordance
with previous observations on the cumulative effect of
disease-associated alleles in modulating neurodevelop-
mental phenotypes [88].
Variants in the sodium channel gene SCN2A have

been often described in cohorts of patients with NDDs
[89–91]. Among them is the common rs10174400-T
allele, associated to impairment of cognitive ability in
schizophrenic patients [92, 93] but with an unlikely effect
in healthy individuals, which points towards a pathogenic
effect that is conditionally dependent on the genetic back-
ground and, therefore, on the cumulative effect of distinct
alleles as mentioned above. Extending these promising
results to other neurodevelopmental disorders, it is
expected that more cases of allelic interaction could
highlight the etiology of these diseases, further explaining
the genotype-phenotype correlation and the genetic
overlap often observed [94].

Conclusions
Neurodevelopmental disorders are a public health chal-
lenge due to complexity and heterogeneity of the etiology
in conjugation with the high prevalence attained. Several
biological pathways are disrupted in neurodevelopmental
disorders, mainly at genes involved in synaptogenesis,
chromatin remodeling, cell proliferation, and differen-
tiation. Many of these genes, expressed during brain em-
bryonic development, are intolerant to haploinsufficiency.
It is important to continue the collection of information
provided by WES and WGS data and focus deeply on

epistatic interactions between identified mutations and
polymorphic variants. In a more ambitious perspective,
epigenetics may reveal itself as a promising therapeutic
approach in the near future, exploiting the promise of
numerous epigenome-wide association studies that are
addressing neurodevelopmental disorders. Finally, it can-
not be devaluated the major role that gene-environment
interactions play in the outcomes of the diseases, implying
that much attention should be given in the future to
implement measures able to promote NDD prevention.
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