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Abstract

Background: Variability in genes implicated in drug pharmacokinetics or drug response can modulate treatment
efficacy or predispose to adverse drug reactions. Besides common genetic polymorphisms, recent sequencing
projects revealed a plethora of rare genetic variants in genes encoding proteins involved in drug metabolism,
transport, and response.

Results: To understand the global importance of rare pharmacogenetic gene variants, we mapped the variability in
208 pharmacogenes by analyzing exome sequencing data from 60,706 unrelated individuals and estimated the
importance of rare and common genetic variants using a computational prediction framework optimized for
pharmacogenetic assessments. Our analyses reveal that rare pharmacogenetic variants were strongly enriched in
mutations predicted to cause functional alterations. For more than half of the pharmacogenes, rare variants account
for the entire genetic variability. Each individual harbored on average a total of 40.6 putatively functional variants,
rare variants accounting for 10.8% of these. Overall, the contribution of rare variants was found to be highly gene-
and drug-specific. Using warfarin, simvastatin, voriconazole, olanzapine, and irinotecan as examples, we conclude
that rare genetic variants likely account for a substantial part of the unexplained inter-individual differences in drug
metabolism phenotypes.

Conclusions: Combined, our data reveal high gene and drug specificity in the contributions of rare variants. We
provide a proof-of-concept on how this information can be utilized to pinpoint genes for which sequencing-based
genotyping can add important information to predict drug response, which provides useful information for the design
of clinical trials in drug development and the personalization of pharmacological treatment.
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Background
The response of patients to medical treatment is influ-
enced by a variety of physiological, pathological, environ-
mental, and genetic factors [1]. These inter-individual
differences can lower treatment efficacy or manifest in ad-
verse drug reactions (ADRs), which are estimated to cause
around 6.5% of all hospital admissions [2]. Overall, the
genetic makeup of a patient accounts for 20–30% of the
inter-individual variability in drug response [3], but for
certain clinically important drugs, such as metoprolol and

torsemide, twin studies suggested genetic contributions to
the variability in their pharmacokinetics of up to 90% [4].
Genetic variability in phase I and phase II enzymes, trans-

porters, cytochrome reductases, and nuclear receptors,
hereafter jointly termed pharmacogenes, can modulate
drug absorption, distribution, metabolism, and excretion
(ADME), thereby shaping human drug response and the
risk of ADRs. Prominent examples include associations of
common TPMT variants with hematological toxicity of
6-mercaptopurines, ultrarapid metabolism of CYP2D6 with
codeine toxicity, and effects of specific CYP2C19 polymor-
phisms on the response to clopidogrel or proton pump in-
hibitors [5]. Yet, a substantial fraction of the heritable
variability in drug response cannot be explained by these
common variants, suggesting that other genetic factors are
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important contributors. In recent years, increasing capaci-
ties and decreasing costs of next-generation sequencing
(NGS) platforms have facilitated large-scale studies of gen-
etic variation and NGS assays are becoming increasingly
implemented in clinical diagnostics [6]. Importantly,
NGS-based analyses revealed that over 90% of the overall
genetic variability in pharmacogenes is allotted to rare gen-
etic variants, but the impact of rare genetic variability on
drug pharmacokinetics has not been systematically evalu-
ated (Additional file 1: Table S1) [7–10].
We therefore analyzed the distribution of rare and

common gene variants in the 208 clinically most rele-
vant pharmacogenes of 60,706 unrelated individuals and
leveraged these genetic variability profiles to predict the
relevance of rare SNVs for the pharmacokinetics or ADR
risks for several clinically important drugs of diverse
therapeutic areas. Based on these analyses, we conclude
that the contribution of rare genetic variants is gene-
and drug-specific and can account for a substantial part
of the unexplained genetic inter-individual variability in
drug response. Furthermore, we highlight genes for
which comprehensive NGS-based genotyping instead of
candidate SNP interrogations can reveal important add-
itional information to personalize pharmacological treat-
ment strategies. The presented data incentivizes the
consideration of rare pharmacogenetic variants for the
guidance of personalized drug therapy and holds import-
ant implications for the design of clinical trials.

Methods
Data sources
Human sequencing data from 60,706 unrelated individ-
uals was obtained from the Exome Aggregation Consor-
tium (ExAC) database [11], a platform that provides
summary frequency information of exonic genetic vari-
ants from 17 large-scale sequencing projects. Notably,
consistency of the individual data sets is assured by
reprocessing of all raw data through the same bioinfor-
matic pipelines. We complemented the obtained variants
with six non-exonic variants from the 1000 Genomes Pro-
ject [12] that define CYP1A2*1C (rs2069514), CYP1A2*1F
(rs762551), CYP2C19*17 (rs12248560), CYP3A4*22
(rs35599367), CYP3A5*3 (rs776746), and UGT1A1*28
(rs8175347). Variants with less than 10,000 called
high-quality alleles were not considered. Novel variants
were defined relative to dbSNP release 135.

Definitions
Loss-of-function (LoF) intolerance scores were provided
by Lek et al. based on the expectation-maximization algo-
rithm [11]. In brief, low scores (< 0.1) indicate that the
number of protein-truncating variants is similar to what is
expected by chance, whereas high scores (> 0.9) indicate
much fewer of such variants are observed than would be

expected, suggesting haploinsufficiency. Aggregated func-
tional variant frequency is defined as the sum of MAFs of
all variants predicted to be deleterious. Variants with
MAF ≤ 0.01 were considered as rare, and variants with
MAF > 0.01 were considered as common.

Variant analyses and computational functionality
predictions
Computational algorithms mostly use evolutionary con-
servation as a metric to predict whether a given variant
likely has functional effects. Importantly, we previously
evaluated 18 current functionality prediction methods
and found that their predictive performance was low for
poorly conserved genes, such as cytochrome P450s [13].
Here, we therefore used a functionality prediction

method that we previously developed [13]. In brief, using
high-quality experimental data for 123 pharmacogenetic
alleles, Zhou et al. tailored the parameterization of 18
different algorithms specifically for ADME genes and in-
tegrated the results of multiple prediction methods into
an ADME-optimized prediction framework [13]. Finally,
the model’s performance was validated in an independ-
ent validation cohort of additional 121 experimentally
characterized variants. Overall, the model achieved 92%
sensitivity and 95% specificity for loss-of-function and
functionally neutral variants, respectively, thereby sub-
stantially outperforming previous computational tools
on pharmacogenomics data sets.

Results
Analysis of the genetic landscape in 208 human
pharmacogenes
We analyzed the genetic variability in 208 genes with
importance for drug ADME using exome sequencing data
from 60,706 unrelated individuals. In total, we identified
69,923 variants distributed across transporter genes
(33,792 variants in 73 genes), genes encoding phase 1
(21,161 variants in 71 genes) and phase 2 enzymes (10,411
variants in 46 genes), nuclear receptors (2338 variants in 9
genes), and other pharmacogenes with miscellaneous
functions (2221 variants in 6 genes; Fig. 1a). Notably,
57,773 (83%) of these 69,923 variants we identified were
novel as compared to dbSNP release 135 (Fig. 1b).
Evolutionary constraints in transporters as well as in phase

1 and phase 2 drug-metabolizing genes were low as judged
by the large numbers of loss-of-function variants identified
in these genes (LoF intolerance score = 0.08 ± 0.02 SEM; see
the “Methods” section for details). In contrast, nuclear re-
ceptors and other selected genes with importance for drug
response were highly LoF-intolerant (LoF intolerance score
= 0.53 ± 0.11 SEM), comparable to values observed across
haploinsufficient genes (LoF intolerance score > 0.5; Fig. 1c)
[11]. Importantly, the vast majority of variants were rare
(98.5%; MAF < 1%) or very rare (96.2%; MAF < 0.1%) and
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more than half (51.1%) of all variants were only detected in
a single individual, highlighting the genetic diversity in hu-
man pharmacogenes (Fig. 1d).

Rare variants contribute substantially to functional
variability
To evaluate the functional importance of rare pharmaco-
genetic variants, we computed functionality assessments
of each SNV using a computational assessment model
specifically optimized for the assessment of pharmaco-
genes (see the “Methods” section for details). We then
aggregated frequencies of frameshift, splice, start-lost,
stop-gain, and putatively deleterious missense variants
and found that the pattern and distribution of genetic
variability differed substantially across the 208 pharma-
cogenes analyzed. Genetic variability with functional im-
pact was governed by few high-frequency variants for
some genes, including ABCB5, SLC22A10, CYP1A2,

CYP2C8, or GSTT2 (Fig. 2a). In contrast, the functional-
ity of the majority of pharmacogenes, including ABCB1,
SLC10A1, and CYP3A7, is dominated by rare genetic
variants. The frequency of genetic variants predicted to
affect the functionality of the gene product differed more
than 1000-fold between genes. The most highly variable
genes were SLC22A10 (aggregated functional variant fre-
quency 1.08), ABCB5 (0.91), and FMO2 (0.86), whereas
the lowest numbers of functional variants were observed
for GSTT1 (0.0006), RXRA (0.0007), PPARD (0.0011),
and CYP17A1 (0.0014; Fig. 2a).
Notably, rare pharmacogenetic variants were strongly

enriched in mutations predicted to cause functional al-
terations (Fig. 2b), consistent with previous reports [12,
14, 15]. In the 208 pharmacogenes combined, each indi-
vidual harbored on average a total of 40.6 putatively
functional variants (Fig. 2c). Rare variants accounted for
4.4 (10.8%) of these functional variants, of which 1.8, 1.7,
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Fig. 1 The landscape of pharmacogenomic variability. a Pie chart showing the distribution of the identified 69,923 variants across transporters
(blue), phase 1 (red) and phase 2 (green) enzymes, and other pharmacogenes (purple). b 57,723 (83%) of the identified 69,923 pharmacogenetic
variants were novel as compared to dbSNP release 135. c Violin plots showing the evolutionary constraint on loss-of-function (LoF) alleles. High
scores indicate significantly less LoF variants than expected by chance. Details regarding the statistical framework are given in Lek et al. [11]. Violin
plots were generated using BoxPlotR [50]. d Of the identified variants, 98.5 and 96.2% were rare (MAF < 1%) or very rare (MAF < 0.1%), respectively,
and 51.1% of all variants were only found in a single individual
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0.7, and 0.2 were allotted to transporters, phase 1, phase
2, and other pharmacogenes, respectively (Fig. 2c).

Prediction of the importance of rare genetic variants for
drug response
Given the significant contribution of rare genetic vari-
ants to the functional variability in pharmacogenes, we
considered it of importance to include rare variants into
predictions of drug response. Using the genetic informa-
tion as template, we analyzed the contribution of rare
genetic variants for drug pharmacokinetics and/or drug
response, focusing on five drugs with well-characterized
pharmacology and substantial unexplained inter-individual
variability. Specifically, we evaluated the relevance of rare
SNVs for the anticoagulant warfarin, the HMG-CoA reduc-
tase inhibitor simvastatin, the antifungal voriconazole, the
antipsychotic olanzapine, and the antineoplastic agent iri-
notecan (Additional file 2: Table S2). We first estimated the
relative importance of different genetic factors for drug me-
tabolism phenotypes of the specific drugs based on exten-
sive literature analysis. Subsequently in a second step, we
integrated these evaluations with our genetic variability data
to derive assessments of the impact of rare genetic variants
on the pharmacokinetics of or response to the given drug.

Warfarin response
Warfarin is a racemic mixture of the R- and S-stereoisomers
of which the S-form is at least five times more potent. War-
farin response is influenced by common genetic polymor-
phisms in CYP2C9, CYP4F2, and VKORC1, which jointly
explain up to 45% of warfarin dose requirements [16]. Yet
also other genes, such as CYP3A4, CYP1A2, EPHX1, and
ABCB1, have been implicated in warfarin pharmacokinetics
[17–19]. However, despite this extensive knowledge of
warfarin transport and metabolism, around 40% of the vari-
ability in warfarin dose requirements remains unexplained
by common genetic variants and other patient-specific fac-
tors [20].
Our analyses predict that rare genetic variants contrib-

ute only minorly to the metabolism of the pharmacologic-
ally less potent R-enantiomer of warfarin (Fig. 3a–c).
Similarly, their contribution to warfarin pharmacodynam-
ics by alterations in CYP4F2 (3.6%) and VKORC1 (2%)
function is expected to be relatively low. Importantly
however, rare SNVs have a major impact on hepatic
S-warfarin metabolism. Overall, 2.1% of CYP2C9 alleles
are predicted to harbor rare variants with deleterious ef-
fects, accounting for 18.4% of the genetically encoded
functional differences in CYP2C9 activity (Fig. 3b). More-
over, our analyses predict rare variants with functional
consequences in 1.3% of ABCB1 alleles, encoding the
P-gp/MDR1 transporter that is implicated in warfarin
clearance, whereas no common deleterious variants were
identified (Fig. 3b). However, given the controversy

regarding the functional impacts of common ABCB1 vari-
ants, such as rs1045642 and rs2032582, future research is
necessary to delineate associations between ABCB1 geno-
types and factors related to P-gp/MDR1 activity [21].
Combined, our analyses pinpoint CYP2C9 and ABCB1 as
loci for which comprehensive NGS profiling can likely re-
veal substantial additional information regarding the un-
explained variability in warfarin dose requirements.

Simvastatin myopathy
ADRs related to high-dose simvastatin therapy are
strongly linked to the common (12.9% MAF) genetic vari-
ant rs4149056 in SLCO1B1 (encoding the transporter
OATP1B1) with an odds ratio of 4.5 per copy of the risk
allele [22]. Toxicity is caused by an impaired hepatic up-
take of the drug that results in elevated plasma concentra-
tions of simvastatin acid, which have been shown to cause
myotoxicity in vitro [23] (Fig. 3d). In our analyses, we cor-
rectly predicted the functional impact of rs4149056 and
did not find additional common variants with reduced
functionality. However, we identified rare deleterious vari-
ants with an aggregated frequency of 1.2%, which are esti-
mated to jointly explain 8.7% of the genetic basis of
SLCO1B1 variability (Fig. 3e). Similarly, rare variants are
expected to contribute substantially to the metabolism
and transport of simvastatin with an aggregated rare func-
tional variant frequency of 1.3, 1.1, and 0.8% for ABCB1,
CYP3A4, and ABCG2, respectively (Fig. 3f).

Voriconazole efficacy and ADRs
Voriconazole is a triazole antifungal agent exhibiting
large inter-individual variability in serum concentrations
that is a common reason for therapeutic failure or the
manifestation of ADRs. Voriconazole is extensively metabo-
lized by various CYPs (CYP2C19, CYP2C9, and CYP3A4)
and FMOs (FMO1, FMO3, and FMO5) accounting for 75
and 25% of its hepatic metabolism, respectively (Fig. 4a)
[24, 25]. Genetic polymorphisms in CYP2C19 have been
reproducibly linked to differences in voriconazole serum
levels and jointly explain around 50% of the inter-individual
variability in voriconazole metabolism ([26] and references
therein). In addition to CYP2C19 alleles, clinical pharmaco-
genetic studies also implicated reduced functionality vari-
ants of CYP2C9 (CYP2C9*2) and CYP3A4 (rs4646437) in
differences in voriconazole pharmacokinetics [27, 28]. For
CYP2C19, our analyses identified rare deleterious variants
with an aggregated frequency of 1.6%, whereas the common
functional CYP2C19 alleles CYP2C19*2 and CYP2C19*17
showed frequencies of 18.5 and 15.3%, respectively (Fig. 4b).
Consequently, rare variants are estimated to account for
4.4% of the overall genetic variability of CYP2C19 function.
Furthermore, rare alleles contributed substantially to the
variability in other genes implicated in voriconazole efficacy
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Fig. 3 The relevance of rare genetic variants for warfarin response and simvastatin-related myotoxicity. a Scheme depicting the metabolism
and therapeutic action of warfarin. The less potent R-enantiomer of warfarin is metabolized by CYP1A1, CYP1A2, CYP3A, and CYP2C19, whereas
the more potent S-enantiomer is inactivated by CYP2C9. Warfarin inhibits the VKOR complex, which reduces vitamin K, an essential factor for
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and ADRs, including FMO1 (100% contribution), FMO5
(100%), CYP3A4 (43.1%), and CYP2C9 (18.4%; Fig. 4b, c).

Serum olanzapine levels
The therapeutic benefits for schizophrenic or bipolar
patients when treated with the antipsychotic olanzapine
are limited by extensive inter-individual variability in
olanzapine serum concentrations, which can result in
exposure levels outside the therapeutic interval [29]. As

olanzapine serum levels are directly linked to the likeli-
hood of therapeutic success [30] and the risk of ADRs
[31, 32], an individualization of dosing regimens prom-
ises to increase treatment success rates.
While the metabolism of olanzapine is well character-

ized, the influence of genetic factors is more controversial
(Fig. 4d). CYP2D6 and UGT2B10 hydroxylate or glucuro-
nidate olanzapine, respectively, but so far, no study dem-
onstrated clinically relevant effects of haplotypes of these
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genes on olanzapine exposure. In contrast, multiple
clinical association studies found that genetic variants in
CYP1A2, FMO3, and UGT1A4 could explain up to 50% of
differences in olanzapine serum levels, whereas other
studies failed to replicate such associations ([33] and refer-
ences therein). Rare variants substantially contribute to
UGT1A4 and UGT2B10 variability and are predicted to
account for 100 and 47% of the genetically encoded
inter-individual variability in the functionality of these
genes (Fig. 4e, f ). On the contrary, we estimate that rare
variants only explain 6.3, 5.5, and 1.6% of the variability in
CYP2D6, FMO3, and CYP1A2, respectively.

Irinotecan toxicity
Irinotecan is a topoisomerase inhibitor prodrug that is
used in combination therapy for advanced colorectal,
lung, and other cancers. Irinotecan has a narrow thera-
peutic window and, as a consequence, up to 36% of pa-
tients suffer from dose-limiting toxicities [34]. Irinotecan
is subjected to a complex interplay of competing meta-
bolic activation and inactivation pathways (Fig. 5a).
Around 97% of irinotecan is metabolized by CYP3A4
and CYP3A5 to the pharmacologically inactive metabo-
lites APC and NPC, while only 3% become metabolically
activated into SN-38 by the carboxylesterases CES1 and
CES2. Subsequently, SN-38 is detoxified by glucuronida-
tion mediated by UGT1A1 and, to a lesser extent,
UGT1A9. Irinotecan and its metabolites are excreted
into the bile and intestine via multiple transporters of
the ABC family. Importantly, the β-glucuronidase en-
zymes of the intestinal microflora can re-activate glucur-
onidated SN-38 resulting in diarrhea and damage to all
segments of the intestine [35].
Genetic variants in UGT1A1 have been reproducibly

linked to neutropenia and diarrhea toxicity in various
ethnicities and dosing regimens [36]. Furthermore, mul-
tiple polymorphisms in the transporter genes ABCB1,
ABCC1, ABCC2, ABCG2, and SLCO1B1 have been impli-
cated in irinotecan clearance and/or risk of toxicity [37–
40]. While associations between CYP3A genotype and iri-
notecan pharmacokinetics are controversial, incorporation
of CYP3A activity data into dosing calculations have re-
sulted in reduced incidence of severe neutropenia [41].
Interestingly, our computational analyses of population-

scale sequencing data indicate that rare genetic variants are
important factors for irinotecan activation and transport
(Fig. 5b). The aggregated frequency of rare deleterious al-
leles in CES1 and CES2 were 1.5 and 0.4%, respectively, ac-
counting for 19.6 and 100% of the functional genetic
variants in these genes. Similarly, for SLCO1B1 and ABCC1,
8.7 and 40.5% of all deleterious variants were assigned to
rare variants, while for ABCB1, ABCC2, and ABCG2, no
common variants with functional consequences were iden-
tified. Notably though, we do not consider here variants

with functional impacts that do not result in changes of the
gene product, such as the synonymous variants rs1045642
(ABCB1 I1145I) and rs1128503 (ABCB1 G412G) or the
UTR variant rs717620 in ABCC2. In contrast,
inter-individual variability in UGT1A1 is primarily due to
common polymorphisms, such as UGT1A1*28, and only an
estimated 4.5% are allotted to rare SNVs.
Combined, our evaluations indicate that rare genetic

variants in pharmacogenes have the potential to explain
a substantial part of the unexplained genetic variability
in drug metabolism phenotypes. Examples were selected
for which gene-drug interactions were well studied, and
we speculate that the relative importance of rare variants
is even higher for less extensively characterized drugs.
Furthermore, we give indications about the extent of
genetically encoded functional variability that would be
missed when only considering common genetic variants,
thereby providing guidance for the optimal drug-specific
choice of genotyping strategy.

Discussion
From a drug development perspective, an appropriate phar-
macokinetic profile is of key importance to achieve the de-
sired spatial and temporal exposure pattern of a given drug
of interest. However, genetic variants in ADME genes en-
coding for transporters, drug-metabolizing enzymes, or
nuclear receptors modulate drug pharmacokinetics and thus
impact treatment efficacy and the risk of ADRs. Conse-
quently, 190 drugs approved by the US Food and Drug
Administration (FDA) and 155 drugs approved by EMA
currently contain pharmacogenetic information in their
labels, of which many are related to drug pharmacokinetics
[42, 43]. Besides well-characterized common polymor-
phisms, ADME genes harbor a plethora of rare genetic vari-
ants that are not interrogated by current pharmacogenomic
genotyping panels. By leveraging large-scale whole-exome
sequencing data from 60,706 individuals, we present here
the first analysis in which we systematically integrated infor-
mation about rare genetic variability into predictions of
pharmacokinetic variability (Additional file 2: Table S2).
Individual in silico functionality prediction algorithms

distinguish deleterious from neutral variants with sensi-
tivities and specificities between 60 and 90%. Further-
more, by using computational methods optimized for
the evaluation of pharmacogenes with low evolutionary
constraints, we were able to show that up to 92% sensi-
tivity and 95% specificity can be achieved for
loss-of-function and functionally neutral variants, re-
spectively [13]. Furthermore, rare copy number varia-
tions in pharmacogenes, accounting for up to 1% of all
loss-of-function alleles, are an additional source of gen-
etic variability with relevance for drug metabolism phe-
notypes that are commonly not considered by
computational functionality prediction algorithms [44].
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Notably, genetic variability in non-coding regions has
been demonstrated to have important influence on pheno-
typic traits [45]. However, while promising progress has
been made regarding the prediction of the effects of those
variants based on DNA sequence [46], no current predic-
tion framework can reliably predict the functionality of
non-coding genetic variation, such as synonymous vari-
ants or variants located in UTRs, promoters, or en-
hancers. With respect to CYP alleles, such mutations
represent < 1% of all functionally important variant alleles
described (https://www.pharmvar.org/genes). We there-
fore restricted our analyses to the evaluation of LOF vari-
ants and variants that directly affect the amino acid
sequence of their respective gene products.

Thus, while the predictive power of current functional-
ity prediction methods is still not sufficient to support a
recommendation of these tools for genetic counseling of
individual patients, our data indicate however that lever-
aging of NGS technology can yield significant amounts
of additional information for pharmacogenomic predic-
tions on a population scale. Accordingly, we advocate
for the development of a widened perspective in which
conclusions about the functionality of a gene product
are not solely based on the interrogation of few common
variants. Rather, we recommend that the entire spectrum
of genetic variability, including rare or novel variants,
should be considered and integrated into gene activity
scores. This holistic perspective is especially important

IRI

SN-38

CES1

CES2

SN-38-Glc

UGT1A1

UGT1A9

CYP3A4/5

APC/NPC

ABCB1

ABCC2

ABCC2

ABCB1

ABCC2

ABCG2

IRI

SN-38

SN-38-Glc

UGT1A1

UGT1A9

Bacterial
β-glucoronidases

Diarrhea

CES1

CES2

SLCO1B1 IRI

SN-38ABCC1

CES1

CES2

Neutropenia

BloodHepatocyteIntestine

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

CYP3A
5 

UGT1A
1 

SLC
O1B

1 

CES1 

ABCC1 

ABCC2 

CYP3A
4 

ABCB1 

ABCG2 

UGT1A
9 

CES2 

Active metabolites

Inactive metabolites

Involved gene

Rare Variants
Common variants

F
ra

ct
io

n
 o

f 
al

le
le

s 
w

it
h

d
el

et
er

io
u

s 
va

ri
an

ts

0%

5%

10%

15%

20%
CES2 
UGT1A9 
ABCG2 
CYP3A4 
SLCO1B1 
ABCB1 

CES1 

UGT1A1 

CYP3A5 

ABCC1 

ABCC2 A
g

g
re

g
at

ed
 f

re
q

u
en

cy
 o

f 
ra

re
d

el
et

er
io

u
s 

va
ri

an
ts

3.
8%

4.
5%

8.
7%

19
.6

%

40
.5

%

10
0%

43
.1

%

10
0%

10
0%

10
0%

10
0%

A

B C

Irinotecan

Fig. 5 Analysis of genetic factors contributing to dose-limiting irinotecan toxicity. a Scheme showing tissue specific involvement of gene products in
the irinotecan pathway. See www.pharmgkb.org/pathway/PA2001 for further information. b Overview of the aggregated frequencies of common
(MAF≥ 1%, blue) and rare deleterious genetic variants (MAF < 1%, red) in genes implicated in irinotecan metabolism and transport. Values next to the
columns indicate the relative contribution of rare genetic variants. c Stacked column plot showing the aggregated frequency of deleterious rare
variants involved in irinotecan ADME

Ingelman-Sundberg et al. Human Genomics  (2018) 12:26 Page 9 of 12

https://www.pharmvar.org/genes
http://www.pharmgkb.org/pathway/PA2001


as rare polymorphisms are enriched in variants that alter
the functionality of the gene product and are the sole
genetic factors for variability of more than 50% of the
pharmacogenes analyzed (Fig. 2b).
Relating the functional inventory of pharmacogenetic

variability to the pharmacology of selected drugs of
interest can provide important insights into predicted
hotspots of unexplained inter-individual differences in
drug metabolism-related phenotypes. In this work, we
estimated the relative contribution of rare genetic vari-
ants to the variability in pharmacokinetics and/or ADR
risk of five clinically important drugs from different
therapeutic areas. Rare variants are estimated to contribute
significantly to the inter-individual variability of warfarin
pharmacokinetics and irinotecan toxicity accounting for
18.4% of deleterious CYP2C9 alleles and > 40% of the vari-
ability in irinotecan transport (Figs. 3a and 5). In contrast,
the relative importance of rare variants is expected to be
lower for the metabolism of simvastatin, voriconazole, and
olanzapine for which rare variants only contribute between
1.6 and 8.7% of the key metabolic and/or transport pro-
cesses. Thus, we find that the relevance of rare genetic vari-
ants is highly drug-specific, depending on the gene
products involved. These findings suggest that it is likely
that the inter-individual variability in pharmacokinetics and
response for certain drugs is to a large extent determined
by rare genetic variability, which is important to consider
particularly in drug development. Integrating pharmaco-
logical information of the drug of interest with information
about the distribution of rare variants in pharmacogenes
can guide the design of the genotyping strategy most suit-
able to reveal important additional genetic factors that im-
prove the prediction of drug metabolism phenotypes.
For many drugs, genetic variability cannot be directly

translated into effectiveness or ADR susceptibility due to
the interdependency of different metabolic pathways.
For instance, genetic or pharmacological inhibition of
the major pathway of a given drug can result in a shunt
to an alternative otherwise negligible metabolic route, as
observed for oxycodone [47]. To date, data regarding the
effects of such gene-gene or gene-drug interactions is
sparse, which complicates predictions of drug effective-
ness or safety even when rare genetic variants are incor-
porated into the analyses. Thus, while the consideration
of pharmacogenomic information including rare genetic
variants promises to improve ADME predictions, further
work particularly in physiologically based pharmacoki-
netic (PBPK) modeling is necessary to reliably predict
treatment outcomes for the individual patient.
Currently, genotyping is largely based on the interro-

gation of well-characterized, common polymorphisms.
This strategy neglects the impacts of rare variants as ex-
perimental in vitro or in vivo data that demonstrate their
functional impact is not available. Yet, due to rapidly

decreasing sequencing times and costs, we suggest that
current NGS technology in combination with more ad-
vanced computational prediction methods could already
today facilitate the refinement of individualized predic-
tions regarding drug efficacy and its propensity to cause
ADRs and thereby to contribute to the implementation
of pharmacogenetic markers into routine care [48, 49].
Furthermore, the multitude of ongoing sequencing pro-
jects on unprecedented scale, such as the 100K Ge-
nomes Project run by the British Department of Health
and the 1 Million Genomes project as part of the Chin-
ese Precision Medicine Initiative, will soon provide a
wealth of information about non-transcribed, regulatory
regions and improve linkage information between vari-
ants, which will allow to expand the scope of computa-
tional analyses from variants to haplotypes. For the field
of pharmacogenomics, these developments hold promise
to further increase the predictive power of gene-drug
response predictions and to allow more accurate esti-
mates of drug response across more narrowly stratified
subpopulations.

Conclusions
We present results suggesting that integration of rare phar-
macogenomic variability can improve predictions of drug
pharmacokinetics compared to the use of candidate vari-
ants. This information is important for drug development
and clinical care as well as for future preemptive pharmaco-
genomic advice. Furthermore, these data incentivize the de-
sign of prospective trials using NGS-based genotyping for
specific medications, such as warfarin and irinotecan, to as-
sess whether clinical outcomes can be improved.
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