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Transcription start sites at the end of
protein-coding genes
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Abstract

Previous studies demonstrated that massive induction of transcriptional readthrough generates downstream of
gene-containing transcripts (DoGs) in cells under stress condition. Here, we analyzed TSS-seq (transcription start site
sequencing) data from the DBTSS database. We investigated TSS tags at the end of gene for all pan-stress and
untreated-cell DoGs, in comparison with expression-matched non-DoGs. We observed significantly more TSS tags at
the end of pan-stress and untreated-cell DoG genes than non-DoG genes, even though their TSS tags in the promoter is
the same. Importantly, the median value of TSS tags at gene end normalized to gene promoter is significantly higher than
the median expression ratio of short DoG to host gene and of long DoG to host gene. Our results indicate that downstream
overlapping long non-coding RNAs derived from the TSS at the gene end may be an important source of DoGs.
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Background
Vilborg et al. analyzed nuclear transcriptome changes in
SK-N-BE(2)C human neuroblastoma cells [1] and NIH3T3
mouse fibroblast cells [2] under heat shock, osmotic stress,
and oxidative stress by using RNA-seq. They observed
massive induction of transcriptional readthrough, or
downstream of gene-containing transcripts (DoGs), under
all stress conditions. Being long (often > 45 kb) and diverse
(> 2000 species), DoGs may contribute significantly to
the transcriptome.
Previously, we have demonstrated that the progester-

one receptor (PGR) gene processes a very long 3′-UTR
of approximately 10 kb and this length can be further
extended in the monkey endometrium from the view of
sequencing data [3]. However, we have found that this
extension is not due to a readthough, but an independ-
ent transcription start site (TSS) at the end of PGR,
resulting a sense long non-coding RNA (lncRNA) over-
lapping with PGR 3′-UTR. Thus, we questioned whether
these DoGs observed by Vilborg et al. [1, 2] are down-
stream overlapping lncRNAs instead of readthrough
products from the promoter of protein-coding genes.

To answer this question, we performed a bioinformatic
analysis of the public data. Our preliminary results challenge
the readthough model proposed by Vilborg et al. [1, 2].

Methods
The TSS-seq data performed on NIH3T3 cells were
downloaded from the DataBase of Transcriptional Start
Sites (DBTSS, https://dbtss.hgc.jp). The DNaseI data for
NIH3T3 cells as well as Pol2, H3K4m1, and H3K4m3 for
MEF (mouse embryo fibroblast) cells were derived from
the ENCODE project (https://www.encodeproject.org).
The UCSC Genome Browser (http://genome.ucsc.edu/)
was used to display TSS-seq data and chromatin features
for four representative DoGs: Hnrnpa2b1, Txn1, Hspa8,
and Ifitm2. The genomic coordinates were based on
mouse mm9 genome assembly.
In addition to the four representative DoGs, we extracted

the genomic coordinates for all the DoGs described by
Vilborg et al. [2]. The number of TSS tags at 1-kb region of
a gene promoter and gene end were summarized according
to TSS-seq data. Because DoGs and non-DoGs differ in size
and gene expression levels, we constructed an equal size
expression-matched subset for non-DoGs by randomly
sampling using in-house PERL scripts. Difference between
groups was tested by the nonparametric Mann-Whitney U
test implemented in MATLAB (MathWorks, version 7.5).
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Fig. 1 TSS-seq data and chromatin features for four representative DoGs. a Hnrnpa2b1. b Txn1. c Hspa8. d Ifitm2. Open chromatin in the genome
is marked by Pol2 and DNaseI occupancy. H3K4me3 is a promoter marker and H3K4me1 is an enhancer marker

Table 1 Statistical analysis of TSSs at gene end
Category Type Median (25th–75th quantiles) P value

Promoter-1 k Non-DoGs 204 (61–639)

Pan-stress DoGs 207 (47–782) 0.687

Untreated DoGs 203 (78–718) 0.534

End-of-gene-1 k Non-DoGs 15 (2–51)

Pan-stress DoGs 22 (5–75) 0.0000285*

Untreated DoGs 23 (6–79) 0.00000276*

End-of-gene-1 kb/promoter–1 kb Non-DoGs 0.0769 (0.0138–0.4071)

Pan-stress DoGs 0.1149 (0.0193–0.6251) 0.000289*

Untreated DoGs 0.1279 (0.0191–0.7435) 0.0000193*

Expression-matched non-DoGs were randomly selected, and Mann-Whitney U test was performed. P values were calculated by comparing to non-DoGs
*P < 0.05
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Results and discussion
By combining oligo-capping with high throughput sequen-
cing, the TSS-seq approach is able to collect genome-wide
TSS information together with a quantitative analysis of the
expression levels of transcripts [4]. We examined TSS-seq
data performed on NIH3T3 cells from the DBTSS database
[5]. For all four representative DoGs (Hnrnpa2b1, Txn1,
Hspa8, and Ifitm2) [2], the number of TSS tags at the end
of a gene is one order of magnitude lower than that at a
promoter, except Hspa8 (Fig. 1). Hspa8 exhibits higher
number of TSS tags at the gene end compared to the pro-
moter, likely due to intronic snoRNAs. These TSSs may
generate lncRNAs with an independent promoter at the
gene end.
We next investigated TSS tags at the end of a gene for

all pan-stress and untreated-cell DoGs, in comparison
with expression-matched non-DoGs. We observed sig-
nificantly more TSS tags at the end of pan-stress and
untreated-cell DoG genes than those of non-DoG genes,
even though their TSS tags in the promoter is the same.
Furthermore, we normalized the number of TSS tags at
the gene end to the number of TSS tags at the promoter
of the same gene. Significance was also reached for the
normalized data (Table 1 and Additional file 1: Figure S1).
Additionally, the median value of TSS tags at gene end

normalized to gene promoter is 0.1088, slightly higher
than the median expression ratio of short DoG to host
gene (0.0146) and of long DoG to host gene (0.0067).
These results indicate that TSSs at a gene end may be
an important source of DoGs.

Conclusion
Taken together, by analyzing TSS-seq data, we suggested
that TSSs at the gene end may be an important major
source of DoGs. Therefore, TSS-seq along with a large
scale of Northern blot and tiling PCR experiments are
required by Vilborg et al. [1, 2] to support their idea that
most DoGs are continuous transcripts caused by a read-
through of protein-coding genes.

Additional file

Additional file 1: Figure S1. Statistical analysis of TSSs at gene end
(related to Table 1). (A) Number of TSS tags at 1-kb region of gene
promoter and gene end, among pan-stress DoGs, untreated-cell DoGs, and
non-DoGs. (B) Normalized number of TSS tags at gene end to the number
of TSS tags at gene promoter, among pan-stress DoGs, untreated-cell DoGs,
and non-DoGs. (TIFF 468 kb)
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