
REVIEW Open Access

MicroRNAs in acute kidney injury
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Abstract

Acute kidney injury (AKI) is an important clinical issue that is associated with significant morbidity and mortality.
Despite research advances over the past decades, the complex pathophysiology of AKI is not fully understood. The
regulatory mechanisms underlying post-AKI repair and fibrosis have not been clarified either. Furthermore, there is
no definitively effective treatment for AKI. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs of
19~23 nucleotides that have been shown to be crucial to the post-transcriptional regulation of various cellular
biological functions, including proliferation, differentiation, metabolism, and apoptosis. In addition to being fundamental
to normal development and physiology, miRNAs also play important roles in various human diseases. In AKI, some
miRNAs appear to act pathogenically by promoting inflammation, apoptosis, and fibrosis, while others may act
protectively by exerting anti-inflammatory, anti-apoptotic, anti-fibrotic, and pro-angiogenic effects. Thus, miRNAs have
not only emerged as novel biomarkers for AKI; they also hold promise to be potential therapeutic targets.
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Background
Acute kidney injury
Acute kidney injury (AKI) is a complex syndrome that
occurs in a variety of settings with clinical manifestations
ranging from a minimal elevation in serum creatinine to
anuric renal failure. AKI conveys significant morbidity
and mortality, is a major risk factor of chronic kidney
disease, and is thus associated with huge health and so-
cioeconomic burdens [1, 2]. Despite research advances
in the past decades, however, the complex pathophysi-
ology of AKI is not fully understood. The regulatory
mechanisms underlying post-AKI repair and fibrosis re-
main to be clarified. Furthermore, there is no definitively
effective treatment for AKI.

MicroRNA biogenesis and function
MicroRNAs (miRNAs) are endogenous single-stranded
noncoding mRNAs of 19~23 nucleotides. They were
first discovered in Caenorhabditis elegans by Ambros’s
group in 1993 [3] and show surprisingly high conserva-
tion across species. The evidence accumulated over the
past two decades shows that miRNAs play a critical role
in the post-transcriptional regulation of almost all bio-
logical cell functions, including proliferation, differenti-
ation, metabolism, and apoptosis [4]. miRNAs, which
are expressed in a tissue-specific manner, are fundamen-
tal to normal development and physiology [4] and are
involved in the pathologic pathways of many disease
models.
To date, more than 2000 miRNAs have been discov-

ered in the human genome. The miRNA-encoded genes
are found as either independent genes having their own
promoters, or as sequences in the introns of protein-
coding genes [5]. RNA polymerase II transcribes an
miRNA gene into a primary transcript (called a pri-
miRNA) of several kilobases that can encode either an
individual miRNA or a polycistronic cluster of two or
more miRNAs. The RNase III enzyme, DROSHA, and
its cofactor DGCR8 (Di-George syndrome critical region
gene 8 or Pasha), cleave a pri-miRNA at its stem-loop
structure, generating an approximately 70-nucleotide
intermediate called the pre-miRNA. Exportin-5 exports
the pre-miRNA from the nucleus to the cytoplasm, and
the RNase III enzyme, DICER, further cleaves it to yield
a single-stranded mature miRNA. To perform its func-
tion, an miRNA is incorporated along with the argo-
naute (AGO) protein to form an effector complex called
the RNA-induced silencing complex (RISC). RISC binds to
the 3′-untranslated region (UTR) of a target messenger
RNA (mRNA), leading to the repression of either protein
translation or mRNA degradation. Unlike small interfering
RNAs in plants, miRNAs do not require complete comple-
mentarity to bind their targets. Instead, the evidence sug-
gests that the “seed sequence” (nucleotides 2 through 8 of

the miRNA) is the most important region for the ability of
an miRNA to bind and regulate its target gene(s). Once
bound, miRNAs induce repression by blocking the initi-
ation or elongation of translation or de-adenylating the
mRNA transcripts. Because miRNAs do not require
complete complementarity to repress gene expression,
a given miRNA can regulate multiple mRNA transcripts
and a given mRNA transcript can be repressed by mul-
tiple miRNAs. It is estimated that miRNAs regulate
more than half of the protein-coding genes in human
[6]. Moreover, miRNAs have been implicated in various
human diseases [7, 8], including kidney diseases, such
as polycystic kidney disease [9], renal cell carcinoma
[10], diabetic nephropathy [11], lupus nephritis, [12]
and renal allograft rejection [13]. In the past few years,
researchers have begun to address the relevance of
miRNAs to AKI.

miRNAs in acute kidney injury
The miRNAs that have been implicated in AKI are sum-
marized in Tables 1 and 2, and those with potential
pathological or protective roles are summarized in
Table 3. The first evidence of miRNAs having patho-
logical roles in AKI was reported by Wei et al. who de-
veloped a Dicer-knockout mouse model, in which Dicer
was specifically deleted from proximal tubular cells. These
mice exhibit a global down-regulation of microRNAs in
the renal cortex. They have normal renal function and
histology under control conditions but show resistance to
the AKI that follows bilateral renal ischemia-reperfusion
(IRI). Under the latter conditions, Dicer-null mice show
significantly better renal function, less tissue damage, less
tubular apoptosis, and better survival than their wild-type
counterparts [14].
miR-10a is renal tubule-specific miRNA that is re-

leased from kidney tissues upon injury. In rodent models
of renal IRI and streptozocin (STZ)-induced diabetic ne-
phropathy, the levels of miR-10a are increased decreased
in urine and kidney tissue, respectively [15, 16]. miR-10a
is thought to exert protective actions during injury by
targeting IL-12/IL-23p40 and the pro-apoptotic protein
BIM [17]. In humans, decreased plasma levels of miR-
10a have been shown to predict AKI in critical patients
of intensive care units (ICUs) [18].
The members of the miR-17 family have been shown

to be induced by pro-inflammatory cytokines, and their
tissue expressions are increased in rodent models of
renal IRI [19, 20].
miR-21 appears to play a dual role; on the one hand, it

protects against injury by inhibiting apoptosis and inflam-
mation; on the other hand, it may amplify the injury re-
sponse and promote fibrosis. Studies have shown that
miR-21 inhibits apoptosis by down-regulating pro-
grammed cell death protein 4 (PDCD4), down-regulating
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Table 1 miRNAs implicated in acute kidney injury

miRNA Samples Species Model Expression Reference

k12-3 In vitro HK-2 cells Oxidative stress Down then up [51]

let-7a T, B Rat, human Contrast nephropathy, contrast
nephropathya

Down [52]

let-7a-1-3p T, U Rat Cisplatin nephropathy Up (urine), down
(tissue)

[33]

let-7a-2* In vitro HK-2 cells, primary PTCs AA nephropathy Up [38]

let-7b B Human ICU AKIa Down [46]

let-7d U Rat Gentamicin nephropathy Down [53]

let-7e T, in vitro Mouse, HK-2 cells IRI Up, down [23, 54]

let-7f B, T Human, mouse ICU AKIa, IRI Down [34, 46]

let-7g T, U Mouse, rat Cisplatin nephropathy Up, down [33, 35]

miR-7 T, in vitro Mouse, HK-2 cells IRI, oxidative stress Up [14, 51]

miR-7a-1-3p T, U Rat Cisplatin nephropathy Up (urine), down
(tissue)

[33]

miR-10a T, U, B Mouse, human, rat IRI, DM-CKD (STZ), FSGSa, ICU AKIa Up, down [15, 16, 18]

miR-10b* T Mouse Cisplatin nephropathy Down [35]

miR-15 U Rat Cisplatin nephropathy Up [55]

miR-15b-5p T, in vitro Mouse, HK-2 cells IRI Down [54]

miR-16 B, U Human, rat ICU AKIa, cisplatin nephropathy Up, down [46, 55]

miR-17-3p T Mouse IRI Up [14, 49]

miR-17-5p T, U Mouse, rat IRI, cisplatin nephropathy Up, down [19, 20, 33]

miR-18a T, B, U, in vitro Mouse, rat, human,
HPTECs

IRI, gentamicin nephropathy,
folic acid, CdCl2, arsenic trioxide,
AA, K2Cr2O7, cisplatin, UUO,
allograft rejectiona, renal fibrosisa

Up, down [14, 34, 47,
56, 57]

miR-19a T Mouse IRI Up [34]

miR-20a T, in vitro, U Mouse, TECs, rat, HK-2
cells

Cisplatin nephropathy, IRI Up, down [37, 54, 55]

miR-20b-5p T, U, in vitro Rat, mouse, HK-2 cells Cisplatin nephropathy, IRI Up (urine), down
(tissue)

[33, 54]

miR-21 B, U, T, in vitro Human, rat, mouse, TEC,
CRL-2753 cells, NRK52E
cells, HK-2 cells

IRI, TGF-β, anti-Thy 1.1, UUO,
SHRSP, gentamicin nephropathy,
folic acid, CdCl2, arsenic trioxide,
AA, K2Cr2O7, allograft rejection

a,
renal fibrosisa, AKIa

Up, down [19–30, 34, 37,
45, 56–58]

miR-24 B, T, in vitro Human, rat, CRL-2753
cells, NRK52E cells, HK-2
cells, HUVECs

ICU AKIa, transplantationa,
UUO, IRI

Up, down [31, 45, 46]

miR-24-2 T Mouse IRI Up [34]

miR-25-3p T, U Rat Cisplatin nephropathy Up (urine), down
(tissue)

[33]

miR-26a In vitro, T HK-2 cells, mouse IRI, oxidative stress, cisplatin
nephropathy

Down [32, 35, 51]

miR-26b T, in vitro, U, B Rat, CRL-2753 cells,
NRK52E cells, human

UUO, cisplatin nephropathy,
ICU AKIa

Down (tissue,
blood), up (urine)

[18, 33, 45]

miR-27a-3p B Human ICU AKIa Down [18]

miR-29a T, in vitro, B HK-2 cells, human Oxidative stress, ICU AKIa Up, down [18, 51, 59]

miR-29b T, in vitro Rat, HK-2 cells Oxidative stress Up [51, 59]

miR-29c T Mouse IRI Up [34, 59]
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Table 1 miRNAs implicated in acute kidney injury (Continued)

miR-30a-5p T, U, in vitro, B Rat, mouse, HK-2 cells,
human

Cisplatin nephropathy, IRI,
contrast-induced nephropathy,
contrast-induced nephropathya

Up (urine, blood,
tissue), down (tissue)

[33, 52, 54]

miR-30c T, in vitro, B Rat, CRL-2753 cells,
NRK52E cells,
mouse, human

TGF-β, UUO, SHRSP, contrast-
induced nephropathy, contrast-
induced nephropathya

Up, down [34, 45, 52]

miR-30c-1 T Mouse IRI Up [34]

miR-30c-2* In vitro HK-2 cells Oxidative stress Down [51]

miR-30d T, U, B Mouse, human IRI, DM-CKD (STZ), FSGSa Up, down, unchanged [16]

miR-30d* B Human ICU AKIa Down [46]

miR-30e T, B Mouse, rat, human Cisplatin nephropathy, contrast-
induced nephropathy, contrast-
induced nephropathya

Up, down [35, 52]

miR-34a T, in vitro Mouse, BUMPT-306 cells,
NRK-52E cells, RTECs

Cisplatin nephropathy, IRI Up [35, 60, 61]

miR-34b T Mouse IRI Up [47]

miR-92a T Mouse IRI Up [34]

miR-92b* B Human ICU AKIa Up [46]

miR-93-3p B Human ICU AKIa, AKI post-cardiac surgerya Down [18]

miR-93-5p T, U Rat Cisplatin nephropathy Up (urine), down
(tissue)

[33]

miR-99b In vitro, T HK-2 cells, mouse ER stress, IRI Down [51, 54]

miR-101-3p B Human ICU AKIa Down [18]

miR-101a T, in vitro Mouse, HK-2 cells UUO Down [25]

miR-106a-5p T, in vitro Mouse, HK-2 cells, primary
PTCs, rat

IRI, AA nephropathy Up, down [19, 20, 38]

miR-122 T Mouse Cisplatin nephropathy, IRI Down [35, 49]

miR-123 T Mouse IRI Up [49]

miR-125a-5p T, in vitro Mouse, HK-2 cells IRI Down [54]

miR-125b T, in vitro Mouse, HepG2 cells,
HEK293 cells, NRK52E
cells

Cisplatin nephropathy [62]

miR-126-3p B Human ICU AKIa Down [18]

miR-126-5p T, in vitro Mouse, rat, TEnCs, TEpCs IRI Up [34, 43, 44, 63]

miR-127-3p T, in vitro, B Rat, mouse, NRK-52E
cells, HK-2 cells, human

IRI, ICU AKIa, AKI post-cardiac
surgerya

Up, down [14, 18, 36, 49]

miR-129-3p T Mouse IRI Up [34]

miR-129-5p In vitro HK-2 cells, primary PTCs AA nephropathy Down [38]

miR-130b-3p T, U Rat Cisplatin nephropathy Up (urine), down
(tissue)

[33]

miR-132 T, in vitro Mouse, human, HPTECs IRI, folic acid, CdCl2, arsenic
trioxide, AA, K2Cr2O7, cisplatin,
UUO, allograft rejectiona,
renal fibrosisa

Up [14, 57]

miR-133a In vitro HK-2 cells ER stress Down [51]

miR-134 T Mouse IRI Up [47]

miR-135b T Mouse IRI Down [14, 49]

miR-140-3p T, U Rat Cisplatin nephropathy Up (urine), down
(tissue)

[33]

miR-141 T Mouse IRI Up [34]

miR-142-3p T, in vitro Mouse, HK-2 cells UUO Up [25]
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Table 1 miRNAs implicated in acute kidney injury (Continued)

miR-142-5p T, in vitro Mouse, HK-2 cells UUO Up [25]

miR-145 T, in vitro Rat, mouse, CRL-2753
cells, NRK52E cells,
CD133+ renal medullary
progenitor cells

TGF-β, SHRSP salt challenge Up, down [39, 45, 64]

miR-146a T, in vitro, B Mouse, TECs, human IRI, ICU AKIa Down (blood), up (tissue) [18, 37]

miR-146b-5p T, in vitro Mouse, human, HPTECs IRI, folic acid, CdCl2, arsenic
trioxide, AA, K2Cr2O7, cisplatin,
UUO, allograft rejectiona,
renal fibrosisa

Up [57]

miR-149 T Mouse IRI Down [34]

miR-150 T, in vitro Mouse, immortalized
mouse cardiac
endothelial cell lines

IRI, AMI using LAD ligation Down [65]

miR-155 B, U, T, in vitro Rat, human, mouse,
HK-2 cells

IRI, gentamicin nephropathy,
Cisplatin nephropathy, AKIa

Up, down [54, 56, 66]

miR-181a* In vitro HK-2 cells ER stress Up [51]

miR-181a-2* In vitro HK-2 cells ER stress Down [51]

miR-181d T Mouse IRI Down [34]

miR-182 T Mouse IRI Up [47]

miR-183-5p T, U Rat Cisplatin nephropathy Up (urine), down
(tissue)

[33]

miR-187 T, in vitro Mouse, TECs IRI Down [37]

miR-188-5p T Mouse IRI Up [34]

miR-191a-5p T, U Rat Cisplatin nephropathy Up (urine), down
(tissue)

[33]

miR-192 T, in vitro, B, U Mouse, rat, CRL-2753
cells, NRK52E cells,
TECs, HK-2 cells,
primary PTCs

IRI, UUO, SHRSP, AA nephropathy,
cisplatin nephropathy, contact freezing,
Dahl salt-sensitive rat with high salt
administration

Up, down [15, 33, 45, 55]

miR-193 T, in vitro, U Mouse, HK-2 cells, Rat UUO, cisplatin nephropathy Down (tissue),
up (urine)

[25, 33, 35, 55]

miR-194 T, in vitro, B, U Mouse, rat, TECs, HK-2
cells, primary PTCs

IRI, AA nephropathy, contact freezing,
Dahl salt-sensitive rat with high
salt administration

Up, down [15, 37–39]

miR-197 T Mouse IRI Down [34]

miR-199a-3p T, in vitro Mouse, TECs IRI Up [37]

miR-200a T, B, U Human, Rat, mouse Contact freezing, Dahl salt-sensitive
rat with high salt administration,
contrast-induced nephropathy,
contrast-induced nephropathya

Up, down [39, 52]

miR-200b T, in vitro, B, U Rat, CRL-2753 cells,
NRK52E cells, human

TGF-β, UUO, contact freezing, early
CKD (Dahl salt-sensitive rat with
high salt administration)

Up, down [34, 39, 45]

miR-200c T, in vitro, U, B Rat, CRL-2753 cells,
NRK52E cells, human

TGF-β, contact freezing, early CKD
(Dahl salt-sensitive rat with high
salt administration), ICU and
transplant AKIa

Up, down [29, 39, 45]

miR-202 In vitro HK-2 cells ER stress Down [51]

miR-203 U Rat Gentamicin nephropathy Down [53]

miR-205 In vitro HK-2 cells, primary PTCs Oxidative stress, ER stress, AA nephropathy Down [38, 51]

miR-207 T Mouse IRI Up, down [14, 34]

miR-210 B, T, in vitro, U Human, mouse, HUVEC-
12 cells, HK-2 cells,
primary PTCs, rat

IRI, Oxidative stress, AA nephropathy,
cisplatin nephropathy, ICU AKIa

Up, down [18, 34, 38,
46, 47, 51, 55]
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Table 1 miRNAs implicated in acute kidney injury (Continued)

miR-211 T Mouse IRI Down [34]

miR-212 T Mouse, human, HPTECs IRI, folic acid, CdCl2, arsenic trioxide,
AA, K2Cr2O7, cisplatin, UUO, allograft
rejectiona, renal fibrosisa

Up, down [34, 57]

miR-214 T, in vitro Mouse, rat, HK-2 cells,
TECs, CRL-2753 cells,
NRK52E cells, human

TGF-β, anti-Thy 1.1, UUO, SHRSP, IRI,
diabetic nephropathya

Up [23–25, 37,
45, 47]

miR-215 In vitro HK-2 cell ER stress Down [51]

miR-218 T, in vitro Mouse, HK-2 cells UUO Down [25]

miR-218-1 T Mouse IRI Up [34]

miR-218a-5p T, U Rat Cisplatin nephropathy Up (urine),down
(tissue)

[33]

miR-221* In vitro HK-2 cells Oxidative stress Up [51]

miR-223 T, in vitro Mouse, HK-2 cells UUO Up [25]

miR-290-3p T Mouse IRI Up [34]

miR-296 T, in vitro Rat, mouse, TEnCs, TEpCs IRI Up, down [14, 43]

miR-302b T Mouse IRI Up [34]

miR-302c T Mouse IRI Up [34]

miR-320 B, T, U Human, mouse, rat IRI, cisplatin nephropathy, gentamicin
nephropathy, contrast-induced
nephropathy, ICU AKIa, contrast-
induced nephropathya

Up, down [23, 33, 34,
46, 52, 53]

miR-322 T Mouse IRI Down [14]

miR-324-3p T Mouse IRI Down [14]

miR-326 T Mouse IRI Down [34]

miR-328 T Mouse IRI Down [34]

miR-328a-3p T, U Rat Cisplatin nephropathy Up (urine),down
(tissue)

[33]

miR-329 T, in vitro Rat, CRL-2753 cells,
NRK52E cells

UUO Down [45]

miR-335 T, U Rat Cisplatin nephropathy Up (urine),down
(tissue)

[33]

miR-340-5p T, U Rat Cisplatin nephropathy Up (urine),down
(tissue)

[33]

miR-346 T Mouse IRI Down [34]

miR-362-5p T Mouse IRI Up [14, 34]

miR-365* In vitro HK-2 cells, primary PTCs AA nephropathy Down [38]

miR-378a-5p T, U Rat Cisplatin nephropathy Up (urine),down
(tissue)

[33]

miR-379 T Mouse IRI Down [14, 49]

miR-382 In vitro HK-2 cells, primary PTCs AA nephropathy Up [38]

miR-423 U Human ICU and transplant AKIa Up [29]

miR-449 In vitro NRK-52E cells Cisplatin nephropathy Up [67]

miR-450a-3p T, in vitro Mouse, HK-2 cells,
primary PTCs

IRI, AA nephropathy Up, down [34, 38]

miR-451 T Mouse IRI Up [34]

miR-455-3p T Mouse IRI Down [14]

miR-466a-5p T Mouse IRI Up [34]

miR-466b-5p T Mouse IRI Up [34]
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Table 1 miRNAs implicated in acute kidney injury (Continued)

miR-466c-5p T Mouse IRI Down [34]

miR-466f-3p T Mouse IRI Down [34]

miR-466g T Mouse IRI Down [34]

miR-466i T Mouse IRI Down [34]

miR-467 T Mouse IRI Up [14]

miR-467a T Mouse IRI Down [34]

miR-467b T Mouse IRI Down [34]

miR-467e T Mouse IRI Down [34]

miR-467f T Mouse IRI Down [34]

miR-467g T Mouse IRI Down [34]

miR-468 T Mouse IRI Down [34]

miR-483 T Mouse IRI Up, down? [34]

miR-484 T Mouse IRI Down [34]

miR-486 T Mouse IRI Up [14]

miR-487b T Mouse IRI Down [14]

miR-489 T Mouse IRI Up [14]

miR-491 T Mouse IRI Down [14]

miR-494 T, U, B Mouse, human IRI, ICU AKIa Up, unchanged [48]

miR-495 T Mouse IRI Up [14]

miR-503 In vitro HK-2 cells ER stress Down [51]

miR-532-3p T, U Mouse, rat IRI, Cisplatin nephropathy Up, down [33, 34]

miR-542-3p In vitro HK-2 cells, primary PTCs AA nephropathy Up [38]

miR-547-3p T Mouse IRI Down [34]

miR-574-5p In vitro HK-2 cells, primary PTCs AA nephropathy Down [38]

miR-617 B Human ICU AKIa Up [46]

miR-620 B Human ICU AKIa Down [46]

miR-625* In vitro HK-2 cells, primary PTCs AA nephropathy Down [38]

miR-630 In vitro HK-2 cells Oxidative stress Up [51]

miR-638 B Human ICU AKIa Up [46]

miR-663b B Human ICU AKIa Up [46]

miR-668 T Mouse IRI Up [14]

miR-669a T Mouse IRI Down [34]

miR-669f T Mouse IRI Down [34]

miR-669h-3p T Mouse IRI Down [34]

miR-671-3p In vitro HK-2 cells, primary PTCs AA nephropathy Down [38]

miR-671-5p T Mouse IRI Up [34]

miR-674 T Mouse IRI Down [34]

miR-680 T Mouse IRI Up [34]

miR-684 T Mouse IRI Up [34]

miR-685 T Mouse IRI Up [14, 34, 49]

miR-687 T, in vitro Mouse, BUMPT-306
cells, HEK cells

IRI Up [14, 49]

miR-689 T Mouse IRI Up [34]

miR-694 T Mouse IRI Up [14]
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phosphatase and tensin homolog (PTEN), activating the
AKT pathway, up-regulating B cell lymphoma 2 (BCL-2),
and decreasing the levels of active caspase-3 and caspase-
8 proteins [21, 22]. Up-regulation of miR-21 also inhibits
inflammation by decreasing nuclear factor-kappaB (NF-
kB), tumor necrosis factor (TNF), interleukin 6 (IL-6), and
IL-18, and by increasing IL-10 [21]. Experimental up-
regulation of miR-21 provides morphologic and functional
renoprotection in animal models of AKI [21–23]. miR-21 is
induced by transforming growth factor beta (TGF-β)/Smad,
hypoxia inducible factor 1 alpha (HIF-1α), TNF, and fibro-
blast growth factor 2 (FGF-2) [24, 25], and this miRNA
promotes fibrosis by targeting peroxisome proliferator-
activated receptor alpha (Pparα) and altering lipid metabol-
ism [26]. miR-21 also targets Mpv17l, a mitochondria
inhibitor of reactive oxygen species (ROS) [26]. miR-21 in-
hibits autophagy by targeting Ras-related proteins in brain

11 a (Rab-11a), decreasing light chain 3-II (LC3-II), de-
creasing beclin-1, and increasing p62 [27]. In vivo blockade
of miR-21 reduces renal fibrosis and macrophage infiltra-
tion in animal models. Moreover, increased urinary and
plasma levels of miR-21 have been observed in various clin-
ical AKI settings [26, 28, 29]. For example, urine and
plasma miR-21 levels were shown to correlate with AKI se-
verity and hospital mortality and to predict the need for
postoperative renal replacement therapy [28]. Interestingly,
one study found decreased, but not increased, expression
of miR-21 in AKI patients. Lower baseline plasma levels of
miR-21 have been demonstrated to predict cardiac surgery-
associated AKI [30].
miR-24 is up-regulated in mouse kidney after IRI and

in patients after kidney transplantation. This miRNA en-
hances apoptosis by down-regulating sphingosine-1-
phosphate receptor 1 (S1PR1), H2A histone family

Table 1 miRNAs implicated in acute kidney injury (Continued)

miR-705 T Mouse IRI Up [34]

miR-708 T Mouse IRI Up [34]

miR-714 T, B Mouse IRI Up [68]

miR-718 T Mouse IRI Down [34]

miR-721 T Mouse IRI Up [34]

miR-744-5p T, U Rat Cisplatin nephropathy Up (urine),down
(tissue)

[33]

miR-805 T, in vitro Mouse, TECs IRI Down [34, 37]

miR-875-5p T Mouse IRI Down [34]

miR-876-5p T Mouse IRI Up [34]

miR-877 T Mouse IRI Up, down? [34]

miR-877* T, B Mouse IRI Up [68]

miR-1187 T Mouse IRI Down [34]

miR-1188 T, B Mouse IRI Up [68]

miR-1196 T Mouse IRI Down [34]

miR-1198 T Mouse IRI Down [34]

miR-1224 T, B Mouse IRI Up [68]

miR-1244 B Human ICU AKIa Down [46]

miR-1249 In vitro HK-2 cells, primary PTCs AA nephropathy Up [38]

miR-1839-5p T, U Rat Cisplatin nephropathy Up (urine),down
(tissue)

[33]

miR-1892 T Mouse IRI Up [34]

miR-1894-3p T Mouse IRI Up [34]

miR-1897-3p T, B Mouse IRI Up [68]

miR-4521 In vitro HK-2 cells, primary PTCs AA nephropathy Down [38]

miR-4640 U Human ICU and transplant AKIa Down [29]

miR-4716-5p In vitro HK-2 cells, primary PTCs AA nephropathy Up [38]

miR-4730 In vitro HK-2 cells, primary PTCs AA nephropathy Up [38]

miR-4747-3p In vitro HK-2 cells, primary PTCs AA nephropathy Up [38]
aHuman studies
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member X (H2A.X), and heme oxygenase-1 (HO-1). In-
hibition of miR-24 was shown to prevent renal injury in
animal models [31].
miR-26a represses IL-6 expression to promote the ex-

pansion of regulator T cells (Tregs). The tissue levels of

miR-26a is down-regulated in animal models of AKI, and
experimental overexpression attenuates renal IRI and im-
proves renal recovery [32]. miR-26b is down-regulated in
the tissue and blood, yet up-regulated in the urine
[18, 33]. Decreased blood levels of miR-26a and miR-

Table 2 miRNAs implicated in human studies related to kidney injury

miRNA Kidney injury Expression Reference

Up Down

hsa-let-7b AKI in ICU Blood [46]

hsa-let-7f AKI in ICU Blood [46]

hsa-miR-10a Focal segmental sclerosis Urine [16]

AKI in ICU Blood [18]

hsa-miR-16 AKI in ICU Blood [46]

hsa-miR-21 AKI, chronic renal allograft dysfunction,
renal allograft rejection, renal fibrosis

Tissue, blood, urine [24, 26, 28, 29, 56]

AKI after cardiac surgery Blood [30]

hsa-miR-24 AKI in ICU Blood [46]

Transplanted renal graft with prolonged
cold ischemia time

Tissue [31]

hsa-miR-26b AKI in ICU Blood [18]

hsa-miR-27a-3p AKI in ICU Blood [18]

hsa-miR-29a AKI in ICU Blood [18]

hsa-miR-30a-5p Contrast-induced nephropathy Blood [52]

hsa-miR-30c Contrast-induced nephropathy Blood [52]

hsa-miR-30d Focal segmental sclerosis Urine [16]

hsa-miR-30d* AKI in ICU Blood [46]

hsa-miR-30e Contrast-induced nephropathy Blood [52]

hsa-miR-92b* AKI in ICU Blood [46]

hsa-miR-93-3p AKI in ICU, AKI post-cardiac surgery Blood [18]

hsa-miR-101-3p AKI in ICU Blood [18]

hsa-miR-126-3p AKI in ICU Blood [18]

hsa-miR-127-3p AKI in ICU, AKI post-cardiac surgery Blood [18]

hsa-miR-146a AKI in ICU Blood [18]

hsa-miR-155 AKI Urine [56]

hsa-miR-200c AKI in ICU, AKI in renal transplant Urine [29]

hsa-miR-210 AKI in ICU Blood [46]

AKI in ICU Blood [18]

hsa-miR-214 Diabetes related chronic kidney disease stage 4 Tissue [24]

hsa-miR-320 AKI in ICU Blood [46]

hsa-miR-423 AKI in ICU, AKI in renal transplant Urine [29]

hsa-miR-494 AKI in ICU Urine [48]

hsa-miR-617 AKI in ICU Blood [46]

hsa-miR-620 AKI in ICU Blood [46]

hsa-miR-638 AKI in ICU Blood [46]

hsa-miR-663b AKI in ICU Blood [46]

hsa-miR-1244 AKI in ICU Blood [46]

hsa-miR-4640 AKI in ICU, AKI in renal transplant Urine [29]
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27a predict AKI in the ICU. Decreased blood levels
of miR-26a and miR-27a prior to cardiac surgery also
predict AKI later on [18].
miR-29a is highly expressed in the kidney, where it

acts against fibrosis by suppressing collagen expression
in tubular cells. Decreased serum levels of miR-29a have
been shown to predict AKI in ICU patients, and correl-
ate with AKI severity [18].
miR-30c, which is essential for normal kidney hom-

oeostasis, targets several genes important for kidney
structure and function. miR-30c is up-regulated in the
tissue, blood, and urine obtained from animal models of
contrast nephropathy and IRI [34].
miR-30d, which is released to the urine from kidney

tissues following injury, down-regulates the apoptotic
proteins, caspase 3 and p53, and may provide protective
effects during IRI [16].
miR-101-3p is highly expressed in the kidney, and de-

creased serum levels of this miRNA have been shown to
predict AKI in the ICU [18].
miR-122 is down-regulated in the mice kidneys of

mice subjected to cisplatin-induced AKI [35]. It exerts
anti-apoptotic effects by down-regulating forkhead box
O3 (Foxo3).
miR-127a, which is induced by HIF-1α, participates in

protecting the cytoskeleton protection (by preventing
actin depolmerization), maintaining cell-matrix and
cell-cell adhesion maintenance (by preventing focal
adhesion complexes disassembly and tight junctions
disorganization), and promoting intracellular traffick-
ing (by targeting kinesin family member 3B) [36]. De-
creased blood levels of miR-127a were shown to predict
AKI in the ICU. Decreased blood levels of miR-127a prior

to cardiac surgery were found be predict AKI later
on [18].
miR-146a is down- and up-regulated in the blood and

kidney, respectively, during AKI. Decreased blood levels
have been shown to predict AKI in the ICU and correlate
with the severity of AKI [18]. It is induced by NF-kB and
exerts anti-inflammatory effect by down-regulating TNF
receptor-associated factor 6 (TRAF-6) and interleukin-1
receptor-associated kinase 1 (IRAK-1) [37].
miR-192 is enriched in kidneys and the small intestine.

It is induced by TGF-β during the stress response. It pro-
motes fibrosis by down-regulating SIP1. It also down-
regulates E3 ubiquitin ligase and murine double-minute 2
(MDM2) and results in de-repression of p53 and G2/M
arrest [38]. miR-194 is also enriched in kidneys and small
intestine. It is induced during the stress response, and its
levels in tissue, blood, and urine levels are increased dur-
ing AKI [15, 38, 39].
miR-199a exerts anti-inflammatory effect by down-

regulating inhibitor of NF-kB kinases b (IKKb) [40], ex-
hibits anti-proliferatory effect by down-regulating the
proto-oncogene MET [41], and confers anti-apoptosis
effect by down-regulating extracellular signal–regulated
kinase 2 (ERK-2) and HIF-1α [41, 42]. Therefore, it may
help limit kidney injury.
miR-126 and miR-296 have been identified in microvesi-

cles from endothelial progenitor cells and are thought to
exert renoprotective effects via their abilities to decrease
apoptosis and leukocyte infiltration, while promotes angio-
genesis and tubular cell proliferation [43]. Hematopoietic
overexpression of miR-126 enhances stromal cell-derived
factor 1/chemokine receptor type 4 (CXCR4) -dependent
vasculogenic progenitor cell mobilization and promotes

Table 3 Functional roles of miRNAs in acute kidney injury

Protective Pathogenic Kidney enriched, released
from injured kidney tissues

Anti-inflammation
miR-10a
miR-21
miR-26a
miR-126
miR-146a
miR-199a
miR-296

Anti-apoptosis
miR-10a
miR-21
miR-122
miR-126
miR-199a
miR-296
miR-494

Anti-fibrosis
miR-29a
miR-200b
miR-200c

Pro-angiogenesis
miR-126
miR-210
miR-296

Enhancing tubular proliferation
miR-126
miR-296

Cytoskeleton, cell-matrix, cell-cell
adhesion, cell trafficking
miR-127a

Pro-inflammation
miR-21
miR-214
miR-494

Pro-apoptosis
miR-24
miR-192
miR-494
miR-687

Pro-fibrosis
miR-21
miR-192
miR-214

miR-10a
miR-30c
miR-30d
miR-200 family
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vascular integrity and supports renal recovery after IRI [44].
Decreased serum levels of miR-126 have been shown to
predict AKI in ICU patients, and correlate with the severity
of AKI [18].
Members of the miR-200 family are highly expressed

in tubular structures such as renal tubules, lungs, the
small intestine, and various exocrine glands. miR-200b
and miR-200c have been proposed to be anti-fibrotic.
They down-regulate TGFβR1 and zinc finger E-box-
binding homeobox (ZEB1/ZEB2), which are transcrip-
tional repressors of E-cadherin, and thereby prevent the
epithelial-to-mesenchymal transition (EMT) induced by
TGF-β [45].
miR-210 is induced by HIF1-α and released by renal

endothelial cell. It regulates angiogenesis by down-
regulating ephrin-A3 and up-regulating vascular endo-
thelial growth factor (VEGF) and vascular endothelial
growth factor receptor 2 (VEGFR2). It also regulates
mitochondria ROS production. Increased blood levels
of miR-210 was shown to predict post-AKI mortality in
critically ill patients [46]. In another study, decreased
blood levels of miR-210 were shown to predict AKI in the
ICU and correlate with the severity of AKI [18].
miR-214 is induced by TGF-β and promotes fibrosis; it

has been shown to down-regulate PTEN, up-regulate
the AKT pathway and inhibit apoptosis of monocytes
and macrophages. miR-214 is up-regulated in various
models of AKI and renal fibrosis [24, 45, 47] as well as
in monocytes of animal with chronic kidney disease. Ex-
perimental antagonism of miR-214 has been shown to
ameliorate renal fibrosis [24].
miR-494 is up-regulated early in AKI, with increased

urine levels detected in rodent models of renal IRI and
patients with AKI. It has been reported to promote apop-
tosis and inflammation by down-regulating activating tran-
scription factor 3 (ATF3) and increasing IL-6, monocyte
chemoattractant protein-1 (MCP-1), p-selectin [48]. Path-
way analysis has suggested that it also targets adiponectin
receptor 2 (ADIPOR2), BCL-2 facilitator, and insulin-like
growth factor 1 receptor (IGF1R), which would increase
inflammation and lead to more damage. However, miR-
494 also targets pro-apoptotic proteins in the AKT path-
way, and to exert protective effects. The mechanism re-
sponsible for regulating the balance between these anti-
and pro- apoptotic effects requires further study.
Finally, miR-687 is induced by HIF-1, and enhances

apoptosis by down-regulating PTEN. Animal studies have
shown that miR-687 blockade preserves PTEN expression
and attenuates cell cycle activation and decreases apop-
tosis, resulting in protection against kidney injury [49].

Conclusions
Many miRNAs have been implicated in the AKI. Some
of them contribute to the pathogenesis by regulating

apoptosis and inflammation, to amplifying or reduce
acute injury responses, while others regulate fibrosis and
angiogenesis, to participate in renal recovery or the pro-
gression to fibrosis. The biological and pathological func-
tions of many miRNAs in AKI are still not fully understood
in AKI. Some studies have yielded inconsistent data regard-
ing the expression pattern of miRNAs across different
samples, species, disease models, and time points. These
discrepancies warrant investigations.
In addition to their tissue expressions, miRNAs may

be detected in various extracellular human body fluids,
such as serum, urine, saliva, and cerebral spinal fluid.
miRNAs are contained in exosomes and may remained
stable over prolonged periods. They may be specifically
up-regulated or down-regulated in response to injury
signals and/or released into body fluids from resident
tissues. Certain miRNAs have been investigated for their
potential to serve as novel biomarkers for the early de-
tection or prognostication of AKI. Given the complex
pathophysiology and the dynamic nature of AKI, an
miRNA panel may be more feasible rather than a single
miRNA. Further validation studies are needed to evalu-
ate the clinical utility of such a panel.
Some miRNAs may be potential therapeutic targets

for AKI. Recently, an miRNA inhibitor has been proven
to successfully suppress the replication of hepatitis C
virus in a clinical trial [50]. Systemic or local administra-
tion of specific miRNAs mimics or antagonists in vivo
could offer a strategy for preventing or ameliorating AKI
or barring its progression to chronic kidney disease.
In the post-genome era, miRNAs are promising rising

stars in translational medicine as they offer the potential
to guide the individualized diagnosis and treatment of
human diseases including AKI.
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