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GSTP1, SERPINE2, and TGFB1 contributing
to the quantitative traits of chronic
obstructive pulmonary disease in Chinese
Han population
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Abstract

Background: Currently, the majority of genetic association studies on chronic obstructive pulmonary disease
(COPD) risk focused on identifying the individual effects of single nucleotide polymorphisms (SNPs) as well as their
interaction effects on the disease. However, conventional genetic studies often use binary disease status as the
primary phenotype, but for COPD, many quantitative traits have the potential correlation with the disease status
and closely reflect pathological changes.

Method: Here, we genotyped 44 SNPs from four genes (EPHX1, GSTP1, SERPINE2, and TGFB1) in 310 patients and
203 controls which belonged to the Chinese Han population to test the two-way and three-way genetic
interactions with COPD-related quantitative traits using recently developed generalized multifactor dimensionality
reduction (GMDR) and quantitative multifactor dimensionality reduction (QMDR) algorithms.

Results: Based on the 310 patients and the whole samples of 513 subjects, the best gene-gene interactions models
were detected for four lung-function-related quantitative traits. For the forced expiratory volume in 1 s (FEV1), the
best interaction was seen from EPHX1, SERPINE2, and GSTP1. For FEV1%pre, the forced vital capacity (FVC), and
FEV1/FVC, the best interactions were seen from SERPINE2 and TGFB1.

Conclusion: The results of this study provide further evidence for the genotype combinations at risk of developing
COPD in Chinese Han population and improve the understanding on the genetic etiology of COPD and
COPD-related quantitative traits.
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Background
Chronic obstructive pulmonary disease (COPD) is defined
as airflow limitation that is not fully reversible [1]. Cigarette
smoking is the major risk factor for COPD, but smokers
show considerable variation in their risk of developing air-
flow obstruction [2]. Although a series of studies have

found the genetics contributions from some genes by ana-
lyzing individual effects of single nucleotide polymorphisms
(SNPs) [3], but in most cases with a large proportion of the
genetic component left unexplained, the genetic risk factors
for COPD are still largely unknown. Recent studies have
approved that complex traits cannot be explained by any
single SNP variant, and the characterization of gene-gene
interactions and gene-environment interactions may be the
key to understand the underlying pathogenesis of complex
diseases [4]. It is therefore suggested that identifying the
possible jointed effects of gene-gene interaction will help
discover the potential susceptibility factors of COPD risk.
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Recent advances in genetic studies have implicated
that COPD represents a complex disease with genetics
contributions from multiple genes. For example, al-
though many studies did not find the association be-
tween EPHX1 and the susceptibility to COPD or disease
severity [5, 6], Vibhuti et al. [7] approved that and the
combination of 113H/139H alleles of mEPHX and
105V/114V alleles of GSTP1 genotypes with same alleles
is associated with imbalanced oxidative stress and lung
function in COPD patients. In addition, Artigas et al. [8]
investigated the combined effect of the risk alleles at six
loci (TNS1, GSTCD, HTR4, AGER, THSD4, and HHIP)
and found their joint effects on lung function and COPD
risk. Therefore, as a complex polygenic disease, COPD is
likely affected by the operation of multiple genes and the
coincident actions of several genetic events. However,
most conventional genetic studies often use binary dis-
ease status as the primary phenotype, but for COPD,
many quantitative traits have been shown to correlate
with the disease status and to have greater sensitivity in
detecting early pathological changes. For example, a ra-
tio between forced expiratory volume in 1 s (FEV1) and
forced vital capacity (FVC) has emphasized the import-
ance of the functional assessment of usually progressive,
non-fully reversible airflow limitation [9]. The BODE
index, a multidimensional parameter including the
body-mass index (B), the degree of airflow obstruction
(O), functional dyspnea (D), and exercise capacity (E),
was reported to be superior to FEV1 in reflecting the se-
verity of COPD and effective in predicting the mortality
in patients with COPD [10]. Therefore, it is suggested
that important insight can be garnered from investigat-
ing genotype combinations contributing to the COPD-
related quantitative traits, which will help improve the
understanding of the genetic etiology of COPD.
Recently, some extension algorithms for detecting and

characterizing epistatic interactions in the context of
quantitative outcomes named as generalized multifactor
dimensionality reduction (GMDR) [11] and quantitative
multifactor dimensionality reduction (QMDR) were de-
veloped [12], and these algorithms allow researchers to
build more accurate models that involve multiple geno-
type combinations contributing to disease-related quan-
titative traits. By summarizing a group/body of evidence,
we found four genes: EPHX1, GSTP1, SERPINE2, and
TGFB1, that are reported to be associated with COPD,
and these associations have been confirmed by replica-
tion and meta-analysis [13]. Therefore, in the present
study, we genotyped 44 SNPs (Additional file 1) involved
in these four genes in 310 COPD patients and 203 con-
trols which belonged to the Chinese Han population to
explore the joint gene-gene interactions contributing to
COPD-related quantitative traits based on the GMDR
and QMDR algorithms. We also used a web-based tool

GeneMANIA [14] to find genes that interact in any way
(physically, genetically, etc.) with our studied four genes
in this paper. Our study provides further evidences to
identify genotype combinations at risk of developing
COPD in Chinese Han population and improve the un-
derstanding of the genetic etiology of COPD.

Results
General characteristics of COPD-related quantitative traits
for patients
The general characteristics of COPD-related quantitative
traits for patients are shown in Additional file 2. Espe-
cially, the distribution of the modified Medical Research
Council dyspnea scale (MMRC) is as follows: 52 patients
(16.8 %) MMRC 0, 144 (46.5 %) MMRC 1, 84 (27.1 %)
MMRC 2, 11 (3.5 %) MMRC 3, and 19 (6.1 %) MMRC 4,
with a median of 1 (P5–P95, 0–4). This MMRC distribu-
tion indicates that the degrees of various physical activities
that precipitate dyspnea of the COPD patients in our
study are mild. The distribution of BODE index is as fol-
lows: 9 patients (2.9 %) BODE 0, 56 (18.1 %) BODE 1, 93
(30.0 %) BODE 2, 71 (22.9 %) BODE 3, 36 (11.6 %) BODE
4, 26 (8.4 %) BODE 5, 11 (3.5 %) BODE 6, 4 (1.3 %) BODE
7, 3 (1.0 %) BODE 9, and 1 (0.3 %) BODE 10, with a me-
dian of 2 (P5–P95, 1–6). The BODE distribution also indi-
cates that the severity of our COPD patients is mild. In
addition, in terms of the effect of a single SNP, except
rs41266229 (EPHX1) and rs729631 (SERPINE2) which
display the significant difference between the COPD pa-
tients and normal controls after passing the multiple test-
ing corrections [13], no significant differences were seen
from other single SNP (Additional file 1).

Single marker analysis for COPD-related quantitative
traits based on patients
In the current study, we performed the analysis of single
marker effect for seven COPD-related quantitative traits.
We included covariates age, sex, and pack-years of smok-
ing in the model. For the seven COPD-related quantitative
traits, except rs729631 (SERPINE2) which showed a
strong association with FVC, no single marker effects
showed a significant association after being corrected by
Bonferroni procedure (Table 1). It appears that most of
these candidate SNPs do not show independent associa-
tions with COPD-related quantitative traits.

The best two-way gene-gene interaction models for
COPD-related quantitative traits using GMDR, QMDR, and
traditional quantitative trait locus (QTL)
In Table 2, we listed the best interaction models identified
by QMDR from tenfold cross-validation for COPD-related
quantitative traits after being adjusted by covariates age,
sex, and pack-years of smoking based on 310 patients. For
FEV1, the best model is the interaction between EPHX1

An et al. Human Genomics  (2016) 10:13 Page 2 of 12



Table 1 Single marker effects for sixa COPD-related quantitative traits (n = 310 patients)

Six COPD-related quantitative traits

FEV1 FEV1%pre FVC FEV1/FVC (%) BODE 6MWT

Main effects p* p** Main effects p* p** Main effects p* p** Main effects p* p* Main effects p* p** Main effects p* p**

SERPINE2
(rs729631)

0.004 0.176 EPHX1
(rs868966)

0.048 1.000 EPHX1
(rs868966)

0.010 0.440 EPHX1
(rs3738040)

0.005 0.220 SERPINE2
(rs4674841)

0.008 0.352 EPHX1
(rs3766934)

0.027 1.000

SERPINE2
(rs975278)

0.016 0.704 EPHX1
(rs2854450)

0.022 0.968 EPHX1
(rs1877724)

0.007 0.308 EPHX1 (rs2234922) 0.019 0.836 SERPINE2
(rs4674841)

0.045 1.000

SERPINE2
(rs4674841)

0.037 1.000 EPHX1
(rs3738040)

0.023 1.000 EPHX1
(rs2292558)

0.015 0.660 GSTP1 (rs1138272) 0.020 0.880 SERPINE2
(rs6734100)

0.046 1.000

SERPINE2
(rs17196253)

0.013 0.572 EPHX1
(rs1877724)

0.045 1.000 GSTP1
(rs1138272)

0.028 1.000 SERPINE2
(rs13392495)

0.025 1.000

SERPINE2
(rs3820766)

0.029 1.000 SERPINE2
(rs729631)

2.27E-
05

0.001 SERPINE2
(rs729631)

0.002 0.088 SERPINE2
(rs2118409)

0.032 1.000

SERPINE2
(rs975278)

0.035 1.000 GSTP1
(rs36211088)

0.032 1.000

aThere was no significant main effect for MMRC before being corrected by Bonferroni procedure
*p < 0.05 before corrected by Bonferroni procedure; **p after corrected by Bonferroni procedure
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(rs2292568) and GSTP1 (rs4147581). The 1000 permuta-
tion testing revealed a significant P value of 0.019. The
average maximum of FEV1 (1.82) was seen from rs2292568
(CC)*rs4147581 (GG), whereas the average minimum of
FEV1 (1.08) was seen from rs2292568 (CT)*rs4147581
(GG) (Fig. 1a). This indicated that having two minor alleles
for the EPHX1 gene corresponded to an average maximum
value of FEV1. For FEV1%pre, the best interaction was de-
tected between rs1051741 (EPHX1) and rs6957 (TGFB1).
The 1000 permutation testing also revealed a significant P
value of 0.042. The average maximum of FEV1%pre (59.92)
was seen from rs1051741 (CT)*rs6957 (AA), whereas the
average minimum of FEV1%pre (35.57) was seen from
rs1051741 (CT)*rs6957 (AG) (Fig. 1b). For FVC, the best
model is the interaction between SERPINE2 (rs7583463)
and TGFB1 (rs2241713) which shows a significant P value
of 0.028 based on the 1000 permutation testing. The aver-
age maximum of FVC (3.18) was seen from rs7583463
(AA)*rs2241713 (CG), whereas the average minimum of
FVC (2.40) was seen from rs7583463 (CC)*rs2241713 (GG)
(Fig. 1c). However, for the other four COPD-related quanti-
tative traits, the best interaction models were found within
the gene itself but not found between genes, and the 1000
permutation testing did not find their significance (P >
0.05). For FEV1/FVC, 6-min walk test (6MWT), BODE,
and MMRC, the best interactions are rs17196253 (SER-
PINE2) and rs6748795 (SERPINE2) (Fig. 1d), rs7583463
(SERPINE2) and rs2118409 (SERPINE2) (Fig. 1e),
rs4674841 (SERPINE2) and rs6748795 (SERPINE2) (Fig. 1f),
and rs2118409 (SERPINE2) and rs6712954 (SERPINE2)
(Fig. 1g), respectively. The description and comparison
among multiple genotype combinations contributing to
seven COPD-related quantitative traits are shown in Add-
itional file 3. For the 310 patients, after being adjusted by
covariates, the most significant gene-gene interactions iden-
tified by traditional QTL were consistent with those inter-
actions obtained from QMDR in five quantitative traits:
FEV1, FEV1%pre, FVC, FEV1/FVC, and BODE (Additional
files 4 and 5). For MMRC and 6MWT, there were some
discrepancies between QMDR and traditional QTL. We
know that QTL is less sensitive in detecting the local

effects, whereas QMDR can find the genotype combina-
tions that distinguish the high- and low-level groups opti-
mally. Therefore, when there is good discrimination
between the low- and high-level groups in terms of traits,
these two methods can both detect the interactions with
good power.
In addition, for lung-function-related quantitative traits

(FEV1, FEV1%pre, FVC, and FEV1/FVC), we further de-
tected the two-way gene-gene interaction using GMDR,
QMDR, and traditional QTL based on the whole samples
(310 patients and 203 controls). GMDR, QMDR, and
traditional QTL all found that the best interaction model
was EPHX1 and GSTP1 for FEV1, SERPINE2 and TGFB1
for FVC, and FEV1/FVC (Table 3 and Additional file 4).

The best three-way gene-gene interactions models for
COPD-related quantitative traits using GMDR and QMDR
In Table 4, we listed the best three-way gene-gene inter-
action models identified by QMDR from tenfold cross-
validation for COPD-related quantitative traits after be-
ing adjusted by covariates age, sex, and pack-years of
smoking based on 310 patients. For FEV1, the best
model was seen from GSTP1, EPHX1, and SERPINE2.
For FEV1%pre, FVC, and FEV1/FVC, the best models
were seen from SERPINE2 and TGFB1. For BODE,
EPHX1 and SERPINE2 were found to be the best inter-
action. For MMRC, interaction between GSTP1, TGFB1,
and SERPINE2 was the best model with a significant
permutated P value of 0.022. For 6MWT, the best model
was SERPINE2 and GSTP1.
In addition, for four lung-function-related quantitative

traits, we also detected the three-way gene-gene interac-
tions using GMDR and QMDR based on the whole sam-
ples. GMDR and QMDR all found that the best
interaction model was EPHX1, GSTP1, and SERPINE2
for FEV1 and SERPINE2 and TGFB1 for FVC (Table 5).

Gene-gene interactions in the network
To extend/explore the potential joint genetic effects
of these four genes (EPHX1, GSTP1, SERPINE2, and
TGFB1), we also used a web-based tool GeneMANIA

Table 2 The best models identified by QMDR for COPD-related quantitative traits in Chinese Han population (n = 310 patients)

COPD-related quantitative traits The best two-way interaction models T-CV score CV consistency Permutated P value

FEV1 EPHX1(rs2292568)*GSTP1(rs4147581) 2.6390 7/10 0.019*

FEV1%pre EPHX1(rs1051741)*TGFB1(rs6957) 1.9234 7/10 0.042*

FVC SERPINE2(rs7583463)*TGFB1(rs2241713) 2.2735 8/10 0.028*

FEV1/FVC (%) SERPINE2(rs17196253)*SERPINE2(rs6748795) 0.3566 3/10 NS

BODE SERPINE2(rs4674841)*SERPINE2 (rs6748795) −0.3295 4/10 NS

MMRC SERPINE2(rs2118409)*SERPINE2 (rs6712954) 1.467 2/10 NS

6MWT SERPINE2(rs7583463)*SERPINE2 (rs2118409) 1.229 7/10 NS

CV cross-validation, NS not significant
*P value obtained from the 1000 permutation testing
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[14] to find their interactions in any way (physically,
genetically, etc.) in the network. We found that ex-
cept EPHX1 which interacted with GSTP1 directly in
the network, these four genes interacted with each

other indirectly by passing a transcription factor
named FOS (Fig. 2). Previous study confirmed the al-
tered expression of gene encode for FOS in the lung
tissues from COPD by using real-time quantitative

Fig. 1 The best gene-gene interaction models for COPD-related quantitative traits using QMDR method. a FEV1. b FEV1%pre. c FVC. d FEV1/FVC
(%). e BODE. f MMRC. g 6MWT. For FEV1, FEV1%pre, FVC, FEV1/FVC, and 6MWT, the y-axis represents the mean of the trait and the error bar
represents the standard deviation. For BODE and MMRC, the y-axis represents the median of the trait and the error bar represents the
quartile interval
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Table 3 The best two-way models identified by QMDR and GMDR for four lung-function-related quantitative traits in Chinese Han population (n = 310 patients + 203 controls)

COPD-
related
quantitative
traits

The best two-way interaction models based on QMDR The best two-way interaction models based on GMDR

Gene-gene interaction CV consistency Permutated P value Gene-gene interaction CV consistency Permutated P value

FEV1 rs2260863(EPHX1)*rs4147581(GSTP1) 5/10 0.031* rs3766934(EPHX1)*rs947895(GSTP1) 3/10 NS

FEV1%pre rs10151740(EPHX1)*rs1800469(TGFB1) 2/10 NS rs2260863(EPHX1)*rs861442(SERPINE2) 3/10 NS

FVC rs7583463(SERPINE2)*rs2241713(TGFB1) 5/10 NS rs6748795(SERPINE2)*rs2241713(TGFB1) 4/10 0.036*

FEV1/FVC (%) rs17196253(SERPINE2)*rs2241713(TGFB1) 8/10 0.027* rs729631(SERPINE2)*rs2241713(TGFB1) 2/10 NS

CV cross-validation, NS not significant
*P value obtained from the 1000 permutation testing
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RT-PCR [15]. However, Demoly et al. found that FOS
was rarely expressed in the normal and pathological
chronic bronchitis and lung cancer proliferative com-
partment of the human bronchi, suggesting its low
role in cell proliferation of the large airways [16].
Considering that FOS is the center of the interaction
network involved in these four genes, it should be fo-
cused on in further studies.

Discussion
Up to now, although there are many different candidate
genes which have been investigated for their potential
roles in lung function impairment in smokers [17, 18],
few works were interested to study the combinations of
polymorphisms in COPD quantitative traits. In this
paper, our study tested for the association of genetic
interaction with seven COPD-related quantitative traits
using recently developed GMDR and QMDR algorithms.
We got the support for the lack of single marker associa-
tions between these SNPs and COPD-related quantita-
tive traits; however, our quantitative trait interaction
analysis yielded several interesting candidate gene-gene
interactions. For FEV1, the best interaction was seen
from EPHX1, SERPINE2, and GSTP1. For FEV1%pre,
FVC, and FEV1/FVC, the best interaction models were
seen from SERPINE2 and TGFB1. Interestingly, we
found EPHX1 interact with GSTP1 directly for FEV1

trait for COPD patients, which is consistent with the
interaction identified by GeneMANIA. In previous stud-
ies, Lakhdara et al. have suggested that combined
EPHX1, GSTP1, GSTM1 and GSTT1 genetic polymor-
phisms may play a significant role in the development of
COPD, emphysema and decline of the lung function
based on the analysis for Tunisian population [18].
Salam et al. found that EPHX1 and GSTP1 variants con-
tribute to the occurrence of childhood asthma and in-
crease asthma susceptibility to exposures from major
roads based on the analysis for white children in South-
ern California [19]. Su et al. performed two-way and
three-way gene-gene interactions to find the combining

effect of GSTP1, INSIG2, and IL4Ra to lifetime asthma
based on the Taiwan seventh-grade children [20]. There-
fore, our results provide new evidences that COPD can-
didate genes may show interactive effects with lung-
function-related traits. However, for 6MWT, MMRC,
and BODE, the best interaction models only existed in
SERPINE2 itself. Because COPD is a complex disease
which is caused by the genetics contributions from mul-
tiple genes, therefore, genes derived from multiple gene-
gene interactions may help reveal their cumulative effect
effectively. SERPINE2 occurring in multiple gene-gene
interactions has been approved for its association with
COPD. In fact, many previous findings have confirmed
that SERPINE2 gene polymorphisms are associated to
COPD and may be involved particularly in the develop-
ment of panlobular emphysema [21].
In addition, we know that the advantage of MDR is

not only that it can deal with sparse and high-dimension
data and therefore might uncover non-linear SNP-SNP
interactions that are missed by QTL but also it can de-
tect high-order interactions between genes which cannot
be performed by QTL as the model complexity increases
with the order of interactions. In the present study, we
used GMDR and QMDR to detect the three-way interac-
tions between genes and found that the best interactions
were seen from some of these four genes. Furthermore,
we have determined that the genes more frequently de-
tected by GMDR, QMDR, and QTL were more likely to
be functional, such as SERPINE2 [22]. This suggests that
our results do not occur only by chance but might reveal
some real biological links between genes. Especially, the
interaction between EPHX1 and GSTP1 were approved
by GeneMANIA web-based tool. The interactions de-
tected by GMDR and QMDR seem more diverse and
less influenced by the SNP main effects.
Moreover, we know that the most common variable

selection strategy for interaction studies often select
SNPs with main effects to test for the interactions. How-
ever, such an approach might cause the miss of some of
the true interactions between genes. It has been reported

Table 4 The best three-way models identified by QMDR for COPD-related quantitative traits in Chinese Han population (n = 310
patients)

COPD-related quantitative traits The best three-way interaction models T-CV score CV consistency Permutated P value

FEV1 rs4147581(GSTP1)*rs2292568(EPHX1)*rs4674843(SERPINE2) 0.9948 3/10 NS

FEV1%pre rs282254(SERPINE2)*rs6738983(SERPINE2)*rs2241713(TGFB1) 0.4451 3/10 NS

FVC rs2241715(TGFB1)*rs282254(SERPINE2)*rs6738983(SERPINE2) −0.2469 2/10 NS

FEV1/FVC (%) rs10191694(SERPINE2)*rs282254(SERPINE2)*rs2241713(TGFB1) 0.0393 4/10 NS

BODE rs13392495(SERPINE2)*rs2118409(SERPINE2)*rs2234922(EPHX1) −0.1974 2/10 NS

MMRC rs4147581(GSTP1)*rs2241718(TGFB1)*rs2118409(SERPINE2) −2.3572 2/10 0.022*

6MWT rs4674841(SERPINE2)*rs7583463(SERPINE2)*rs947895(GSTP1) 0.9901 2/10 NS

CV cross-validation, NS not significant
*P value obtained from the 1000 permutation testing
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Table 5 The best three-way models identified by QMDR and GMDR for four lung-function-related quantitative traits in Chinese Han population (n = 310 patients + 203 controls)

COPD-
related
quantitative
traits

The best three-way interaction models based on QMDR The best three-way interaction models based on GMDR

Gene-gene interactions CV
consistency

Permutated P
value

Gene-gene interactions CV
consistency

Permutated P
value

FEV1 rs4147581(GSTP1)*rs2260863(EPHX1)*rs6736436(SERPINE2) 4/10 NS rs868966(EPHX1)*rs7583463(SERPINE2)*rs947895(GSTP1) 4/10 NS

FEV1%pre rs282254(SERPINE2)*rs6738983(SERPINE2)*rs2241713(TGFB1) 4/10 0.041* rs282254(SERPINE2)*rs729631(SERPINE2)*rs1051740(EPHX1) 2/10 NS

FVC rs2241715(TGFB1)*rs282254(SERPINE2)*rs6738983(SERPINE2) 2/10 NS rs2241713(TGFB1)*rs6748795(SERPINE2)*rs7579646(SERPINE2) 4/10 0.035*

FEV1/FVC
(%)

rs10191694(SERPINE2)*rs868966(EPHX1)*rs2241713(TGFB1) 4/10 NS rs4674843(SERPINE2)*rs282254(SERPINE2)*rs2241713(TGFB1) 5/10 0.039*

CV cross-validation, NS not significant
*P value obtained from the 1000 permutation testing
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that the false positive report probability (FPRP) [23] de-
pends on prior probability that the association is real
and the statistical power of the test, therefore selecting
genes based on their functions can clearly reduce the
FPRP [24]. In the present study, we select four genes:
EPHX1, GSTP1, SERPINE2, and TGFB1 to explore their
interaction effects contributing to COPD-related quanti-
tative traits. In fact, our selected genes are based on the
priori evidences that they are functionally important in
the COPD development [13]. This selection may help re-
duce the FPRP. In the future, the further validation of
the gene-gene interactions found in this study using
other independent datasets will strengthen to confirm
our results and provide further insight into the role of
interacting genes in COPD etiology.
Furthermore, we must point out the limitations of the

present study. Firstly, we limited our studies to interac-
tions within four COPD-related genes, but interactions
between genes based on the other priori biology evi-
dences or on pathways may be related to disease risk as
well and warrant further exploration. Secondly, a newly
developed multivariate quantitative multifactor dimen-
sionality reduction (Multi-QMDR) algorithm is approved
to have better performance than QMDR and GMDR
when multiple quantitative phenotypes are available [25].
This method summarized the multivariate phenotypes
into a univariate score by dimensional reduction analysis,
and then classify the samples accordingly into high-risk
and low-risk groups. Although GMDR and QMDR are ap-
propriate for analyzing the interactions of smaller number
of biomarkers, Multi-QMDR will outperform these two

methods when detecting the interactions between a
greater number of biomarkers [25]. In our future work,
Multi-QMDR will be used for exploring interaction effects
between large numbers of variables including genetic and
environment factors. Finally, a relatively small population
was recruited and the relative small sample size might
affect the results. After the patients were classified accord-
ing to the genotype combinations, the size of the sub-
groups became small and this may also affect the
statistical power [26]. Indeed, we can see that some best
interactions were not significant after being adjusted by
the permutation tests. Maybe added sample size can
change this case. Therefore, our findings should be con-
sidered with caution. In the future, we will use a larger
population and study more candidate genes taking into
account the gene-gene or gene-environment interactions
contributing to COPD phenotype or quantitative traits to
elucidate the genetic pathogenesis of COPD.

Methods
Study population
We recruited 310 unrelated COPD patients aged 40–
75 years from respiratory outpatient clinics at 12 hospitals
in Beijing from October 2007 to March 2009. The cases are
physician-diagnosed COPD; the pulmonary function test
shows FEV1/FVC of less than 0.7 and FEV1%pre of less
than 0.8 predicted and no evidence of primary asthma or
other respiratory diseases. The control group comprised of
203 subjects with the same age range as the case group.
They have no history of respiratory symptoms and exhibit
normal pulmonary function of FEV1/FVC of more than 0.7

Fig. 2 The interaction of four genes in the network using GeneMANIA web tool. The red circles indicate the four genes studied in this paper, and
other pink circles indicate the interacted genes in the network acquired from GeneMANIA web tool. The larger size circles indicate the genes with
the greater degree in the network
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and FEV1%pre of more than 0.8 predicted. Written in-
formed consent was obtained from every participating sub-
ject, and the study protocol was approved by the research
ethics boards of all participating hospitals. The complete
name of the ethics committee is Institutional Review Board
of Beijing Chaoyang Hospital who approved this study. The
detailed entry criteria and the baseline characteristics of
study subjects were seen from our previous study [13, 27].

Genotyping of SNPs
Genomic DNA was isolated from whole blood leukocytes
by the conventional phenol-chloroform method. SNPs
were genotyped using Illumina VeraCode technology per-
formed on BeadXpress genotyping platform (Illumina
Inc., USA). Forty-four tagging SNPs (MAF > 0.05) were
genotyped to capture the common variants of the four
genes (EPHX1, GSTP1, SERPINE2, and TGFB1) under
pairwise mode with r2 threshold of 0.8. The detailed de-
scription was seen from our previous study [13, 27].

COPD-related quantitative traits
In the present study, for COPD patients, we focused
on seven COPD-related quantitative traits to perform
our analysis. These traits were described simply as
follows:

FEV1 and FEV1%pre: FEV1 is called the forced expiratory
volume in one second, indicating the volume in a 1-s
forced exhalation. It is then converted to a percentage of
predicted based on your height, weight, and race normal
named as FEV1%pre. FEV1%pre is a key value to be
known by smokers and COPD patients in order to assess
the severity of the disease [28]. In the present study, the
FEV1%pre of COPD patients is less than 0.8.
FVC is called the forced vital capacity, indicating the
amount of air exhaled forcefully and quickly after
maximum inspiration [29].
FEV1/FVC is a calculated ratio used in the diagnosis of
obstructive and restrictive lung disease. It represents
the proportion of a person’s vital capacity that they are
able to expire in the first second of expiration [30]. In
the present study, the FEV1/FVC of COPD cases is less
than 70 %.
6MWT is the 6-min walk test which is the most com-
monly used exercise test in pulmonary rehabilitation. In
the current study, the 6MWT was carried out accord-
ing to the ATS guidelines [31]. Each patient was or-
dered to walk in a solid and flat corridor for 6 min as
soon as possible. The test was repeated twice with an
interval of at least 30 min. The best walking distances
for two 6MWTs for each patient were recorded as the
6-min walking distance (6MWD).
MMRC is the modified Medical Research Council
dyspnea scale which uses a simple grading system to

assess a patient’s level of dyspnea. The MMRC dyspnea
scale classified the breathless into six grades (0 to 5)
according to self-perceived breathlessness during daily
activities [32]. Grade 5 represents the most severe
category.
BODE index is a multidimensional index comprising
the BMI, degree of airway obstruction (FEV1%pre),
functional dyspnea (MMRC dyspnea scale), and
exercise capacity (6MWT). For the calculation of the
BODE index, we used an empirical model as previously
described [33]. For the first parameter, the value was 0
or 1. For the last three parameters, the patient received
points ranging from 0 (lowest value) to 3 (highest
value). The BODE index was the sum of points for
each variable, ranging from 0 to 10. A higher BODE
index score indicates a greater probability of patient
mortality [34].

Considering that 6MWT, BODE, and MMRC are
measure indexes only appropriate for COPD patients,
therefore the quantitative traits measured for normal
controls are four lung-function-related traits: FEV1,
FEV1%pre, FVC, and FEV1/FVC, which were subjected
to our further analysis.

Statistical analysis
General characteristics of COPD-related quantitative traits
for COPD patients
The general characteristics of COPD-related traits for
patients are described, and the comparison among mul-
tiple genotype combination is performed using the ana-
lysis of variance (ANOVA) or Kruskal-Wallis test. A P
value of <0.05 is considered statistically significant. All
statistical analysis was completed using SPSS version
19.0 (SPSS Inc., Chicago, IL).

Single marker analysis for COPD-related quantitative
traits based on patients
For seven COPD-related quantitative traits for pa-
tients, we used the QTL method (general linear
model) to perform single marker analysis using the
PLINK software (http://pngu.mgh.harvard.edu/~pur-
cell/plink/), and we used an additive model for gene
effects. We included covariates age, sex, and pack-
years of smoking in the model. A correction for
multiple comparisons was performed using the Bon-
ferroni procedure [35].

Gene-gene interaction analysis for COPD-related quantita-
tive traits
In the present study, we used recently developed
GMDR and QMDR algorithms to test for the two-
way and three-way gene-gene interactions with
COPD-related quantitative traits based on the COPD
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patients and the whole samples, respectively. GMDR
uses score-related statistics derived from a general-
ized linear regression model and allows covariates to
be adjusted [11]. QMDR extends the MDR algorithm
and works with quantitative or continuous pheno-
types. Instead of comparing the case-control ratio of
each multi-locus genotype to a fixed threshold,
QMDR compares the mean value of each multi-locus
genotype to the overall mean. The outcome between
high- and low-level groups defined by the QMDR at-
tribute is compared using a T test and then he T
statistic is used as a training score to choose the
best model [12]. In addition, we also used the QTL
method (general linear model) to identify the two-
way gene-gene interactions, and gene-gene pairs
were considered significant if P value is smaller than
0.05. Those interactions with most significant P
values were considered as the best two-way inter-
action models. The QTL was performed with the
PLINK software (http://pngu.mgh.harvard.edu/~pur-
cell/plink/). Considering that the covariates like age,
sex, and smoking status might have a strong main
effect and may potentially interfere with the ability
of MDR and QTL to achieve their goal [35], we
therefore included age, sex, and pack-years of smok-
ing in these methods, respectively.

Gene-gene interactions in the network
To extend/explore the potential joint genetic effects of
these four genes (EPHX1, GSTP1, SERPINE2, and
TGFB1) with other genes, we also used a web-based tool
GeneMANIA [14] to find their interaction in any way
(physically, genetically, etc.) in the network. Because
GeneMANIA does not support pseudogenes, we thus
manually queried the four genes: EPHX1, GSTP1, SER-
PINE2, and TGFB1, and used the automatic weighting
for the network. For the network creation, we used only
physical interactions, predicted interaction, pathways,
and co-expression. GeneMANIA was accessed on 31
May 2013.

Conclusion
In conclusion, our study suggests the potential inter-
actions between EPHX1, SERPINE2, GSTP1, and
TGFB1 contributing to COPD-related quantitative
traits, such as FEV1, FEV1%pre and FVC. The MDR
approaches used in this paper that have the potential
in the identification of complex biological links con-
tribute to COPD development processes. Our study
provides further evidence for the genotype combina-
tions at risk of developing COPD in Chinese Han
population and improves understanding on the gen-
etic etiology of COPD.
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