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Abstract

‘Nonstop’ mutations are single base-pair substitutions that occur within translational termination (stop) codons
and which can lead to the continued and inappropriate translation of the mRNA into the 3'-untranslated region.
We have performed a meta-analysis of the |19 nonstop mutations (in 87 different genes) known to cause human
inherited disease, examining the sequence context of the mutated stop codons and the average distance to the
next alternative in-frame stop codon downstream, in comparison with their counterparts from control (non-
mutated) gene sequences. A paucity of alternative in-frame stop codons was noted in the immediate vicinity
(0—49 nucleotides downstream) of the mutated stop codons as compared with their control counterparts

(p = 7.81 x 10™*). This implies that at least some nonstop mutations with alternative stop codons in close
proximity will not have come to clinical attention, possibly because they will have given rise to stable mRNAs (not
subject to nonstop mMRNA decay) that are translatable into proteins of near-normal length and biological function.
A significant excess of downstream in-frame stop codons was, however, noted in the range 150—199 nucleotides
from the mutated stop codon (p = 8.55 x 10~%). We speculate that recruitment of an alternative stop codon at
greater distance from the mutated stop codon may trigger nonstop mMRNA decay, thereby decreasing the amount
of protein product and yielding a readily discernible clinical phenotype. Confirmation or otherwise of this postulate
must await the emergence of a clearer understanding of the mechanism of nonstop mMRNA decay in mammalian

cells.

Keywords: human inherited disease, stop codon, 3’-untranslated region, nonstop mutation, nonstop mRNA decay

Introduction

There are currently in excess of 60,000 missense and
nonsense mutations (in nearly 4,000 different genes)
listed in the Human Gene Mutation Database
(HGMD) that are known to cause, or to be associ-
ated with, human inherited disease." In addition,
there are 119 examples of mutations (in 87 different
genes) that occur within stop codons, a category of
mutation which therefore constitutes ~0.2% per

cent of codon-changing mutations.' Such lesions
have been termed ‘nonstop’, ‘nostop’ or ‘read-
through’ mutations on the basis that the loss of the
normal translational termination (stop) codon is
likely to lead to continued translation of the mRINA
further downstream into the 3’-untranslated region
(UTR).

Although many authors tacitly assume that the
normal open reading frame will simply be extended
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until the next in-frame stop codon is encountered,
too few human nonstop mutations have so far been
characterised to allow any general conclusions to be
drawn as to their likely phenotypic consequences at
either the mRNA or the protein level. In three
reported cases, however (namely, those nonstop
mutations in the gene encoding ribosomal protein
S19 [RPS19), causing Diamond—Blackfan anaemia,”
the F10 gene causing factor X deficiency” and the
foxhead box E3 [FOXE3] gene causing anterior
segment dysgenesis’), the levels of the mutant
mRNA transcripts were found to be dramatically
lower than those of their wild-type counterparts. By
contrast, the mRNA level associated with a nonstop
mutation in the 3-beta-hydroxy-delta-5-steroid
(HSD3B2) gene adrenal
hyperplasia was found to be near normal, although
both HSD3B2 activity and  antigen
(associated with a predicted 467 amino-acid protein,
extended by 95 residues beyond the wild-type
length) were found to be dramatically reduced.’

dehyrogenase

causing

enzymatic

Similarly, in the case of a nonstop mutation in the
thymidine phosphorylase (TYMP) gene responsible
for mitochondrial neurogastrointestinal encephalo-
myopathy, the mRNA level was not found to be
reduced, even although the thymine phosphorylase
protein product it encoded was undetectable.”

In yeast, nonstop mRNAs
mRNAs lacking translational termination codons
are recognised, by the protein Ski7, on ribosomes
that have become stalled at the 3’ ends of the
mRNAs; these RNAs are then targeted for
exosome-mediated  degradation.”””  While this
process of ‘nonstop mRNA decay’ is fairly effective
at removing nonstop mRNAs, any protein products
generated by

generated from

translation of residual nonstop
mRNAs are degraded by the proteasome.'”"
Although few such studies have so far been
attempted in mammalian cells, the expression level
of nonstop mRNAs generally appears unaltered
while ribosome stalling at the 3’ end of the
elongated nonstop mRNA blocks translation before
the completion of synthesis of full-length polypep-
tides. ">~

Precisely how nonstop mRINA decay impacts
upon naturally occurring human nonstop mutations

is unknown but, as is clear from the five
disease-associated examples mentioned above, the
evidence acquired to date suggests that this may be
a gene- and mutation-dependent process.'”> Thus,
although not uncommon, remarkably little is as yet
known about the nature and consequences of this
type of mutation. In this paper, we report a first
of naturally occurring nonstop

mutations causing human inherited disease. With a

meta-analysis

view to exploring the various possible factors that
could impact upon the likelihood of a given
nonstop mutation coming to clinical attention, we
have performed an analysis of the sequence context
of the mutated stop codons and the average distance
to the next in-frame downstream stop codon in
comparison with gene

control  (non-mutated)

sequences.

Methods

Mutation and control datasets

A total of 119 naturally occurring nonstop
mutations from 87 human genes (Supplementary
Table S1) were identified from the HGMD." The
majority of these nonstop mutations were single
examples identified in specific genes but 18 genes
harboured a total of 50 examples of this type of

lesion. Since the multiple inclusion of identical

sequences flanking mutated stop codons would
have introduced considerable bias into the sub-
sequent analysis, only one mutation per gene was
considered in the analysis of the sequence context.
A control dataset was established which com-
prised 1,692 genes listed in the HGMD (for which
both coding and 3'-UTRs were obtainable from
Ensembl [Build 37] but for which no termination
codon [nonstop] mutations
recorded). Data from the Transterm database
(http://uther.otago.ac.nz/Transterm.html),'® repre-
senting a total of 29,210 stop codons associated
with annotated human genes,
genome-wide controls.

have so far been

were used as

Analysis of nonstop mutations
The relative frequency of each type of stop codon
(ie TAG, TAA and TGA) in the mutated (nonstop

242

© HENRY STEWART PUBLICATIONS 1479-7364. HUMAN GENOMICS. VOL 5. NO 4. 241-264 MAY 201 |



A meta-analysis of single base-pair substitutions in translational termination codons

mutation-bearing) sequences and non-mutated
wild-type control gene sequences was assessed.
Stop
mutations were examined separately.

To detect any bias in the pattern of stop codon
mutability, the mutability of the dinucleotides
within a pentanucleotide spanning the stop codon
and including one flanking nucleotide on either

side was assessed. The number of mutations occur-

codons harbouring single and multiple

ring in each of the 12 possible dinucleotides (note
that four dinucleotides [CC, CA, CG and TC]
cannot occur in conjunction with any stop codon-
spanning pentanucleotide and were therefore
omitted) was counted. In the HGMD control
dataset, one nucleotide position within each stop
codon was randomly mutated and the numbers of
mutations in each possible dinucleotide were then
counted. Statistical significance was determined
using Fisher’s exact test with a Bonferroni correc-
tion being applied to allow for multiple testing.
Since the identity of the nucleotides immediately
flanking the stop codon may influence the suscepti-
bility of the stop codon to mutation, the frequen-
cies of each DNA base in each of the six positions
upstream and downstream of the normally used
stop codon were obtained for both the mutated
sequences and the controls. The expected fre-
quency E of the DNA bases at each position was
calculated based on the probability of observing
this nucleotide in the HGMD control sequences:

g, = P
N,

where Ej; is the expected frequency of the base I =
{A,C,G,T} at position j, Fj is the observed fre-
quency of base i at position j in the HGMD
control dataset, N, is the total number of mutated
sequences and N, is the number of sequences in the
HGMD control dataset. Under the assumption that
the data follow a binomial distribution, we con-
sidered that an increase or decrease in the observed
frequency of a particular nucleotide in a specified
position was statistically significant if the corre-
sponding p value was <0.01. In addition, to inves-
tigate whether any particular stop codon (ie TGA,

TAG or TAA) was associated with any specific
flanking nucleotides, we placed both the mutated
and control sequences into separate datasets for
each of the three stop codons and repeated the
above analysis for each of the new datasets.

Determining the distance to the next
downstream in-frame stop codon

The distance to the next downstream stop codon in
the required reading frame is likely to determine
the length of any extended protein product. For
each mutated (nonstop mutation-bearing) DNA
sequence and each sequence in the HGMD control
dataset, we therefore determined the distance to
the next in-frame stop codon downstream.
Sequences in the HGMD control dataset, for
which the next downstream stop codon was
beyond the 3-UTR sequence available from
Ensembl, were not used in this analysis. Distances
between 0 and 500 base pairs (bp) from the original
stop codon were divided into ‘bins’, each 50 bp
long, the final bin containing all sequences where
the distance was greater than 500 bp. The number
of sequences which fell into each bin was recorded
for both the mutated sequences and the HGMD
sequences. The procedure was
repeated for those sequences with single mutations
and for those sequences harbouring two or more

control same

mutations. To assess the statistical significance of
our findings, we employed Fisher’s exact test using
a Bonferroni correction to allow for multiple
testing. p values of <0.05 were considered to be
statistically significant.

Using the same method as for the original stop
codons, we also investigated the frequency of
occurrence of specific nucleotides surrounding the
next in-frame stop codon downstream. It is possible
that at least a proportion of these downstream
in-frame stop codons are associated with naturally
occurring splice isoforms of the gene,'” and might
therefore possess comparable sequence character-
istics to the stop codons involved in the mutational
events. The flanking sequence may also affect the
likelihood of a mutation coming to clinical
attention.
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Results and discussion

Relative frequency of stop codon involvement
in nonstop mutation

We have performed a meta-analysis of the 119
nonstop mutations (in 87 different genes) known to
cause human inherited disease (Supplementary
Table S1) and recorded in the HGMD.! HGMD is
a comprehensive collection of germline mutations
causing (or associated with) human inherited
disease and 1s an invaluable source of data for
meta-analyses of human gene mutations.

The termination of synthesis of every human
protein is effected by one of three stop codons,
TAG, TAA and TGA, listed in increasing order of
usage in human genes. We posed the question as to
whether one of these stop codons might be more
susceptible to mutation, or alternatively might be
more likely to come to clinical attention once
mutated, than the others. We noted that a majority
of the nonstop mutations (57 per cent) in our dataset
occurred within TGA codons (Table 1). Since 49.4
per cent and 48.6 per cent of stop codons in the
HGMD control gene dataset and human genome
dataset, respectively, were of this type, however, this
finding did not attain statistical significance (Table 1;
p values 0.107 and 0.066, respectively).

The proportion of mutations in the other two
types of stop codon was also not significantly differ-
ent from the corresponding proportions in the set
of HGMD control gene sequences (p values, 0.674
for TAA and 0.201 for TAG) and in the human
genome at large (p values, 0.753 for TAA and 0.88
for TAG).

The above notwithstanding, we speculated
whether TAA codons flanked on the 3’ side by A
might be hypermutable, since this would in effect
constitute a short polyadenine run. It has been
reported that bases adjacent to mononucleotide runs
in the human genome are characterised by an
increased single nucleotide polymorphism fre-
quency.'®  We the
nucleotide A following the TAA stop codon might
influence the mutability of this codon. In agreement
with our postulate, the presence of an A adjacent to
a TAA stop codon was indeed found to increase the
mutability of this codon by 1.4 fold (p = 0.016).

therefore assessed whether

Genes exhibiting an abundance of missense/
nonsense mutations do not harbour a
disproportionate number of nonstop
mutations

As we have noted above, a total of 18 human genes
are known to harbour multiple nonstop mutations.
We therefore sought to determine whether this was
simply due to a particularly large number of
mutations having been reported from these genes.
At the time this analysis was performed (October
2010), the HGMD contained mutation data from a
total of 2,249 human genes, for which a total of
55,813 missense or nonsense mutations had been
reported. No correlation was found, however,
between the probability of finding multiple
nonstop mutations in a given gene and the total
number of missense and nonsense mutations
reported for that gene (Pearson’s correlation
—0.108; p =0.67). Thus, for example, the largest

Table |. The proportion of nonstop mutations harboured by each type of stop codon in mutated gene sequences, HGMD control gene

sequences and the human genome at large

Stop codon type Proportion of stop codons
harbouring nonstop mutations

causing human genetic disease

%)*
TAA 26.05
TAG 16.81
TGA 57.14

3Mutations and sequences were taken from the HGMD.'

Proportion of stop codons in
HGMD control gene sequences

Estimated proportion (number)
of stop codons in the human

(%)° genome (%)°
28.60 27.8 (8106)
21.99 23.6 (6901)
49.40 48.6 (14203)

®The control dataset comprises 1,692 genes listed in the HGMD but for which no nonstop mutations have been recorded to date.
“Based on a total of 29,210 stop codons associated with annotated human genes. Data from the Transterm database (http:/uther.otago.ac.nz/Transterm.html)'®
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number of missense/nonsense mutations was
reported from the F§ gene (1,217) but only one
nonstop F8 mutation has been reported.

Conversely, no missense/nonsense mutations have
been recorded for the HR gene, even though two
nonstop mutations have been identified. Hence we
may conclude that the observation that some genes
harbour multiple nonstop mutations is unrelated to
the number of reported missense and nonsense
mutations for those genes.

Gene ontology analysis for genes harbouring
nonstop mutations

The Database for Annotation, Visualization and
Integrated Discovery (DAVID; http://david.abcc.
ncifcrf.gov/) was used to identify enriched biological
themes within the group of 87 genes harbouring
either multiple or single nonstop mutations.'” A
total of 13 terms were found to be significantly
enriched (p < 0.001, without correction for mul-
tiple (see
Supplementary Table S2). One of the most signifi-

cantly enriched terms was ‘oxidoreductase’ (p =

testin for single  mutations
g g

0.005 after Bonferroni correction), which was
associated with 11 of the 67 nonstop mutation-
harbouring genes identified in the DAVID data-
base.” Six terms were found to be significantly
enriched (p < 0.001 without correction for mul-
tiple testing) for genes harbouring multiple nonstop
mutations (Supplementary Table S3); however, no
significant bias in gene function was noted for these
genes after correction for multiple testing. A search
using  all
revealed an association with the protein information
resource (PIR) term ‘deafness’ (p = 0.0248), corre-
sponding to six of 86 sequences, although the bio-
logical relevance of this observation remains unclear.

nonstop mutation-containing  genes

Mutability of the DNA sequence
encompassing the mutated stop codons

The dinucleotide mutabilities within the penta-
nucleotides flanking the naturally mutated stop
codons and the randomly mutated HGMD control
stop codons were calculated in order to determine
whether there was any bias in the mutability of the

various dinucleotides that occur within the three
types of stop codon, taking the flanking nucleotides
into consideration. A strong positive correlation
was noted between the distributions of mutation-
harbouring dinucleotides and randomly simulated
mutations within the stop codons of HGMD
control sequences (Pearson’s correlation r= 0.975;
p=18.04 x 10”% with respect to the frequencies
of 12 dinucleotides. No significant difterences were
found in dinucleotide-wise comparisons (Table 2),
however, indicating that there is no evidence for a
nearest nucleotide-directed bias in stop codon
mutability.

Sequence context around stop codons that
have been subject to nonstop mutations

In eukaryotic cells, the translational efticiency and
readthrough potential of the three different stop

Table 2. The proportion of mutations found within dinucleotides
in the mutated stop codon-flanking pentanucleotides as compared
with randomly generated HGMD controls

Dinucleotide Occurrence Occurrence p value
of nonstop of random (after
mutations mutations correction
in mutated within HGMD for multiple
sequence control testing)
dataset (%) sequences (%)

AA 25 (21.00) 348 (20.57) 0.907

AC 6 (5.04) 71 (4.196) 0.636

AG 18 (15.13) 303 (17.91) 0.534

AT 16 (13.44) 238 (14.066) 1.0

CT 23 (19.33) 318 (18.79) 0.903

GG | (0.84) 35 (2.07) NA*

GA 32 (26.89) 424 (25.06) 0.663

GC | (0.84) 25 (1.48) NA*

GT 21 (17.65) 259 (15.31) 0.511

TT 10 (8.4) 155 (9.16) 1.0

TA 36 (30.25) 606 (35.82) 0.235

TG 49 (41.18) 602 (35.58) 0.236

*Sample size of mutated sequences too small to generate p values. (Note that four
dinucleotides (CC, CA, CG and TC) cannot occur in conjunction with any stop
codon-spanning pentanucleotide and were therefore omitted from this analysis.)
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codons have been reported to vary as a conse-
quence of the influence of the surrounding nucleo-

21726 With respect to human gene

tide sequence.
sequences, Ozawa et al. reported that the first three
nucleotide positions after the stop codon are highly
conserved, with G and A predominating at the +1
position, and C at the +4 position.”* Again in the
context of human genes, Liu reported a preponder-
ance of C immediately upstream of the stop codon
(at position —1) and G or T at position +1.%° Our
HGMD control dataset exhibits similar sequence
characteristics to those stop codon datasets reported
by Ozawa et al.”* and Liu.*® This sequence bias
flanking human stop codons represents, in eftect, a
consensus sequence for the translational termin-
ation signal that extends beyond the confines of the
stop codon itself. With this in mind, we next
examined the flanking sequences of the mutated
stop codons in order to ascertain whether the local
DNA sequence context could influence the likeli-
hood that the associated nonstop mutations would
come to clinical attention.

We first examined the frequencies of six nucleo-
tides on either side of the stop codon in both 87
mutated and 1,692 control sequences. When con-
sidering the entire stop codon dataset (which
includes sequences flanking the TAA, TAG and
TGA stop codons on the 5’ side at positions —1 to
—6, and on the 3’ side at positions +1 to +6), we
observed a significant paucity in G at the —2 pos-
ition (p=0.0063) (Supplementary Table S4).
When considering the three types of stop codon
separately, there was a significant excess (p =
0.0016) of G and a significant paucity of A (p =
0.0047) two nucleotides downstream of TAA stop
codons (Table 3). Similarly, in the regions flanking
TGA stop codons, we noted a significant excess of
T at the 46 position (p = 0.0094) (Supplementary
Table S5). Although it is conceivable that TAA stop
codons with a G at +2 and TGA stop codons with
a Tat +6 may be more prone to mutate than other
sequences, we prefer the alternative explanation,
that mutations occurring in TAA and TGA stop
codons embedded within these sequence contexts
are more likely, for whatever reason, to come to
clinical attention. No significant difterence was

Table 3. Frequency of nucleotides present in regions flanking the
mutated TAA stop codon (N = 40). Position 0, corresponding to
the stop codon, is not shown. Nucleotide frequencies that are
significantly higher/lower (p < 0.01) in comparison with the
HGMD control dataset are shown underlined

Base -6 -5 -4 -3 -2 -1 | 2 3 4 5 6

A 14 13 7 10 10 5 17 6 Il 7 I8 Il
@ 7 9 I5 10 13 13 9 10 12 I3 9 14
G 8 10 Il 5 12 12 1115 9 9 7 8
T I 8 7 I5 10 10 3 9 811 6 7

noted between the flanking regions of mutated and
control TAG stop codons (data not shown).

The nucleotide frequencies of the flanking
regions of the stop codons that harboured single
and multiple mutations were also analysed separ-
ately, and compared both with the HGMD control
dataset and with Supplementary
Table S6 presents the comparison of sequences
containing only single mutations with sequences in
the HGMD control dataset. These sequences
exhibit a significant paucity of G at the —2 (p =
0.0078) and —3 (p = 0.0096) positions relative to
the controls. However, no significant difference was
apparent between those sequences harbouring mul-
tiple mutations and controls (data not shown).

each other.

Sequence context around the next in-frame
stop codon downstream of the stop codons
that have been subject to nonstop mutations

The DNA sequences around the next downstream
in-frame stop codon were analysed using the same
method as described above. The regions flanking
the next in-frame stop codons located downstream
of the mutated stop codons were compared with
their the HGMD
sequences. This analysis was performed for each of
the three codon types (TAA, TAG and TGA) sep-
arately and for all the mutated stop codons com-

counterparts  in control

bined. When analysing all downstream in-frame
stop codons together, a significant excess of T was
observed at the +6 position (p=0.0051;
Supplementary Table S7). When the three types of
stop codon were examined separately, the only
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significant difference noted was in the sequences
surrounding the next in-frame TGA stop codons,
where an excess of C was found at the +6 position
(p=0.0019; Supplementary Table S8), as com-
pared with the TGA codons in the control dataset.
Taken together, these findings suggest that, in
general, there is no obvious difference between the
sequences surrounding the
in-frame stop codons and their counterparts in the

next downstream
HGMD control sequences. However, it is possible
that the nucleotide occurring at position +6 rela-
tive to the downstream alternative in-frame stop
codon could influence the likelihood that a given
nonstop mutation might come to clinical attention.

The distance to the next stop codon is a key
determinant of whether a given nonstop
mutation will come to clinical attention

We next explored the possibility that the distance
from the mutated stop codon to the next in-frame
stop codon downstream might influence the likeli-
hood that a given nonstop mutation would come
to clinical attention. We reasoned that the greater
the distance between the mutated stop codon and
the next viable alternative downstream stop codon,
the more likely it would be that the mRNA/
protein would be unstable/degraded and hence that
the nonstop mutation would give rise to a deleter-
phenotype.
Conversely, the presence of an alternative in-frame
stop codon in the immediate vicinity of the

ious and  clinically  observable

mutated natural stop codon could yield a near-
normal or at least ameliorated clinical phenotype.
Since such phenotypes would be less likely to
come to clinical attention, we might therefore
expect there to be a paucity of alternative in-frame
stop codons in the immediate vicinity of the
mutated stop codons as compared with their
counterparts derived from the HGMD control
sequences. This was, indeed, what was found when
mutated and control sequences were compared.
Although a relatively strong correlation was noted
between the distributions of the distances (Pearson’s
correlation 0.75; p=0.008), the
alternative in-frame stop codons was found to be

number of

significantly lower among the mutated sequences
than in the controls, but only in the range 0—49
nucleotides downstream of the mutated stop codon
(p=7.81 x 10™%. This implies that at least some
stop codon mutations with alternative stop codons
0—49 nucleotides downstream of the mutated stop
codon will not have come to clinical attention,
possibly because they will have given rise to stable
mRNAs that were (i) not subject to nonstop
mRNA decay and (i1) consequently translated into
proteins of near-normal length and biological
function.

Although the number of in-frame stop codons in
the HGMD control dataset approximates to a
Zipfian distribution, and steadily decreases with
increasing distance from the original stop codon
(Figure 1), we noted a significant excess (by com-
parison with the controls) of downstream in-frame
stop codons within 150—199 nucleotides of the
mutated stop codon (p = 8.551 x 10~ ). A signifi-
cant (p = 6.558 x 10~ %) excess of in-frame stop
codons within 100-299 nucleotides was also noted
as compared with the HGMD controls. One poss-
ible explanation could be that the recruitment of
these alternative stop codons at an intermediate dis-
tance from the mutated stop codon may serve to
trigger nonstop mRINA decay, thereby dramatically
decreasing the amount of protein product produced
and giving rise to a clinical phenotype that is more
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Figure 1. Distribution of distances (in nucleotides) to the next
in-frame stop codon in mutated and HGMD control DNA
sequences.
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Figure 2. Distribution of distances to the next in-frame stop
codon in DNA sequences harbouring single (N = 69) and

multiple (N = 18) mutations.

likely to come to clinical attention. Confirmation
or otherwise of this postulate must await the emer-
gence of a clearer understanding of the mechanism
of nonstop mRNA decay in mammalian cells.
Figure 2 depicts a comparison of the single (N =
69 in 69 genes) and multiple (N = 18 in 18 genes)
nonstop mutations with respect to the distribution
of distances to the next downstream in-frame stop
each sequence. If those nonstop
which occurred within sequences
lacking alternative in-frame stop codons in the
range 0—49 nucleotides from the mutated codon
did indeed display an increased likelihood of
coming to clinical attention, then we might reason-
ably expect those sequences harbouring multiple
nonstop mutations to exhibit an even greater
paucity of alternative downstream in-frame stop
codons in this size range relative to those sequences
harbouring only one nonstop mutation. Although
only 18 sequences harboured multiple nonstop
mutations (yielding very small sample sizes in each
distance category and precluding formal statistical

codon in
mutations

assessment), only one (corresponding to 5.5 per
cent of the total number of multiple nonstop
mutations) of these sequences bearing multiple
nonstop mutations was characterised by an alterna-
tive in-frame stop codon within 50 nucleotides
downstream of the mutated stop codon, as opposed

to 21 sequences with single mutations (30.9 per
cent of the total number of single nonstop
mutations) (Figure 2). This finding is therefore
wholly compatible with our postulate that nonstop
occurring within DNA  sequences
lacking alternative in-frame stop codons in the

mutations

immediate vicinity of the mutated stop codon
display an increased likelithood of coming to clinical
attention, possibly because the resulting extended
mRNAs are more likely to be subject to nonstop
mRNA decay.
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Table S2. Major enriched (p < 0.001) categories for genes harbouring single mutations in stop codons

Category

SP_PIR_KEYWORDS

GOTERM_BP_FAT

GOTERM_BP_FAT

GOTERM_BP_FAT

GOTERM_MF_FAT

SP_PIR_KEYWORDS
SP_PIR_KEYWORDS

GOTERM_CC_FAT

GOTERM_BP_FAT

GOTERM_BP_FAT

GOTERM_BP_FAT

GOTERM_CC_FAT

GOTERM_CC_FAT

Term

Oxidoreductase

GO:0044271 ~ nitrogen
compound biosynthetic
process

GO:0008015 ~ blood
circulation

GO:0003013 ~ circulatory
system process

GO:0050662 ~ coenzyme
binding

Blood coagulation
Flavoprotein

GO:0031093 ~ platelet alpha
granule lumen

GO:0006694 ~ steroid
biosynthetic process

GO:0042592 ~ homeostatic
process

GO:00551 14 ~ oxidation
reduction

GO:0060205 ~ cytoplasmic
membrane-bounded vesicle
lumen

GO:0031983 ~ vesicle lumen

Count

%

16.42

13.43

10.45

10.45

10.5

5.97
7.46
5.97

7.46

17.91

16.42

5.97

5.97

p value

2.03E-05

1.40E-04

2.4|E-04

2.4|E-04

2.59E-04

4.62E-04
5.00E-04

6.78E-04

6.92E-04

7.17E-04

7.76E-04

8.35E-04

9.52E-04

Genes

HSD3B2, DBT, GCDH, MTHFR,
CYP2CI19, DHCR7, FMO2, ETFDH,
HGD, PNPO, SRD5A2

MOCS2, OTC, SLC25A38, ATPIA2, ASL,
ATP6VOA4, NPPA, ATP7B, GCH |

MTHFR, COLIA2, SERPINGI, CFTR,
ATPIA2, NPPA, GCH |

MTHEFR, COLIA2, SERPING I, CFTR,
ATPIA2, NPPA, GCH

DBT, GCDH, FMO2, ETFDH, PNPO,
CRYM, GCH

FGB, F8, SERPINGI, PROS|
GCDH, MTHFR, FMO2, ETFDH, PNPO

FGB, F8, SERPINGI, PROSI

HSD3B2, DHCR7, CFTR, SRD5A2,
NROB/

PTHLH, SLC26A4, CTSK, CASR, OTC,
IKBKG, SLC25A38, LIPG, ATPIA2,
ATP6V0A4, RAD50, ATP7B

HSD3B2, GCDH, MTHFR, CYP2CI9,
DHCR7, FMO2, ETFDH, F8, HGD,
PNPO, SRD5A2

FGB, F8, SERPINGI, PROS|

FGB, F8, SERPINGI, PROSI
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Table S3. Major enriched (p < 0.001) categories for genes harbouring multiple mutations in stop codons

Category

SP_PIR_KEYWORDS

Term

DNA-binding

PRIMARY RESEARCH

SP_PIR_KEYWORDS Peters’ anomaly

SP_PIR_KEYWORDS Transcription regulation

GOTERM_MF_FAT GO:0043565 ~ sequence-specific

DNA binding

GOTERM_MF_FAT GO:0003700 ~ transcription

factor activity

SP_PIR_KEYWORDS Transcription

Table S4. Frequency of nucleotides present in regions flanking the
87 mutated stop codons. Position 0, corresponding to the stop
codon, is not shown. Nucleotide frequencies that are significantly
higher/lower (p < 0.01) in comparison to the HGMD control
dataset are shown underlined

Base -6 -5 -4 -3 -2 -1 | 2 3 4 5 6

A 25 25 12 25 29 16 31 20 19 13 28 20
@ 18 20 27 26 24 27 |5 26 26 25 22 28
G 24 23 28 14 7 24 28 28 19 21 21 19
T 20 19 20 22 27 20 13 23 28 16 20

Table S5. Frequency of nucleotides present in regions flanking the
mutated TGA stop codon (N = 35). Position 0 corresponding to
the stop codon is not shown. Nucleotide frequencies that are
significantly higher/lower (p < 0.01) in comparison to the HGMD
control dataset are shown in bold

Base -6 -5 -4 -3 -2 -1 | 2 3 4 5 6

A 9 9 4 12 12 9 12 9 8 6 10 6

Count % p value Genes

8 42.11 9.77E-04 SOX10, PHOX2B, MECP2,
PAX6, HR, SHOX, ATM, FOXE3

2 10.53 0.0047 PAX6, FOXE3

7 36.84 0.0082 SOX10, PHOX2B, MECP2,
PAX6, HR, SHOX, FOXE3

5 26.32 0.0086 SOX 10, PHOX2B, PAX6, SHOX,
FOXE3

6 31.58 0.0089 SOX 10, PHOX2B, PAX6, HR,
SHOX, FOXE3

7 36.84 0.0092 SOX10, PHOX2B, MECP2,

PAXé, HR, SHOX, FOXE3

Table Sé. Frequency of nucleotides occurring within regions
flanking mutated stop codons harbouring single nonstop mutations.
Position 0 corresponding to the stop codon is not shown.
Frequencies which are significantly higher/lower (p < 0.01) in
comparison with corresponding HGMD controls are shown
underlined

Base -6 -5 -4 -3 -2 -1 | 2 3 4 5 6
A 21 19 1121 21 14 26 15 16 1l 23 16
€ 14 17 19 19 19 19 Il 19 22 21 18 23
G 19 18 22 9 5 17 21 23 13 14 14 14
T 14 14 16 19 23 18 10 Il 17 22 I3 1I5

Table S7. Frequencies of nucleotides flanking the next
downstream in-frame stop codon in mutated sequences. Position 0,
corresponding to the stop codon, is not shown. Frequencies which
are significantly higher/lower (p < 0.01) in comparison with the
corresponding HGMD controls are shown underlined

Base —6 -5 —4 -3 -2 -1 | 2 3 4 5 6

A 9 10 14 16 8 9 I3 10 17 14 16 15

© 7 8 10 13 10 II 4 12 8 9 8 9 @ 13 17 7 12 17 12 17 11 16 9 15

G 12 10 Il 7 5 9 13109 9 8 8 G 8 I5 Il 9 8 10 1212 9 9 10 I2

T 7 8 10 3 8 6 6 4 1011 9 12 T 6 10 14 I5 19 Il Il 9 10 8 12 5
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Table S8. Frequencies of nucleotides flanking the next
downstream in-frame TGA stop codon. Position 0, corresponding

to the stop codon, is not shown. Frequencies which are

significantly higher/lower (p < 0.01) in comparison with the

corresponding HGMD controls are shown in bold

Base

A

©
G
T

-6

4

7

-3 -2 -1 1 2 3 4 5 6
9 3 I 5 6 7 6 9 4
3 6 Il 7 10 8 10 5 12
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