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Abstract
In the past two years, tracking the explosion in data due to ever-improving single nucleotide polymorphism (SNP) maps and cheaper high-

throughput genotyping technologies, a bewildering array of new algorithms and relevant software have appeared for haplotype phase infer-

ence. The alternatives to haplotype inference are to resolve haplotypes completely, either by in vitro methods or by typing close pedigrees,

which is expensive and is not guaranteed in pedigrees, or to ignore haplotype-level analysis in favour of genotype-level analysis, which avoids

the danger of treating inferred haplotypes as real but denies the researcher, potentially, any valuable analytic insights. This review attempts a

snapshot of this rapidly moving field as it stands at present, and is mainly restricted, given the current predominance of SNP genotyping, to the

consideration of diallelic data. For completeness, the review will occasionally refer to algorithms for which no software exists.
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Introduction

Haplotype phase algorithms can be conveniently split into

three main types: parsimony, maximum likelihood and

Bayesian. The researcher may either want to infer haplotype

frequencies in the population, impute the haplotypes possessed

by given individuals, or both. In general, parsimony methods

most naturally estimate individual haplotypes, maximum

likelihood methods most naturally estimate population

frequencies and Bayesian methods can do both.

Parsimony algorithms avoid explicit likelihood calculations

by minimising a ‘costly’ constraint. The grandfather of all

haplotype phase algorithms (an elderly 13 year old) is Clark’s

method,1 a simple iterative procedure inspired by the

constraint ‘minimise the number of new haplotypes you have

to invent’. (To obtain ‘HAPINFERX’ software, apply to

ac347@cornell.edu.) The method can either suffer from

having too many solutions or from having none (although the

general problem of convergence is a common issue with all

haplotype inference algorithms). There is also no guarantee

that the global minimum for the ‘minimise haplotype number’

constraint is reached by Clark’s algorithm. This latter problem

is fixed in a more recent algorithm2 (‘HAPAR’; apply to

lwang@cs.cityu.edu.hk). Phylogenetic parsimony methods

have been explored by Daniel Gusfield and colleagues

(‘GPPH’, ‘DPPH’ and ‘BPPH’; http://wwwcsif.cs.ucdavis.

edu/,gusfield/). The constraint here is ‘minimise the number

of ancestral recombination events required to link the new

invented haplotypes’. As one might expect, this constraint

works well in small, tightly-linked genomic regions and less

well in bigger regions.3

Because parsimony algorithms avoid explicit likelihood

calculations, they do not provide any natural way to measure

uncertainty in the estimates. Maximum likelihood and

Bayesian methods provide a way around this problem.

Maximum likelihood estimation is predominantly under-

taken via Expectation–Maximisation (EM) algorithms. These

use an explicit but very simple likelihood model for the data

(the so-called ‘gene counting’ model). Observed (or partially

observed) haplotype counts follow a multinomial distribution

conditional on the haplotype population frequencies. Random

assortment of haplotypes to individuals is assumed (a standard

assumption for all algorithms, whether maximum likelihood

or Bayesian, working with likelihood functions). The EM

algorithm avoids making assumptions about the mutational

and recombinatorial relationships of the final set of inferred

haplotypes, which some see as an advantage and others as a

disadvantage. The original EM algorithm citation here is

usually Excoffier and Slatkin,4 but see also Hawley and Kidd5

(‘HAPLO’; http://krunch.med.yale.edu/haplo/). Some well-

used implementations of the algorithm are: ‘EM-decoder’6

(http://www.people.fas.harvard.edu/, junliu/em/em.htm),

‘EHþ ’7 (http://www.iop.kcl.ac.uk/IoP/Departments/

PsychMed/GEpiBSt/software.shtml), ‘GENECOUNTING’8

(same website as ‘EHþ ’) and ‘snphap’ (D. Clayton; http://

www-gene.cimr.cam.ac.uk/clayton/software/). Of these,
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‘GeneCounting’ and ‘snphap’ have the added refinement of

allowing for missing data. ‘snphap’ has the additional refine-

ment that, once haplotype frequencies are estimated, the

program swaps from likelihood-based to posterior probability-

based imputation and calculates haplotype-pair probabilities —

conditional on the estimated haplotype frequencies — for all

pairs consistent with an individual’s genotype. ‘snphap’ works

only on diallelic data. The extension ‘hap’ ( J. H. Zhao, same

website as ‘EHþ ’ and ‘GeneCounting’) runs the same

algorithm but accepts multiallelic data.

Bayesian algorithms have the potential to address the issue,

missing from EM algorithms, of how to guide the haplotype

inference process so as to favour solutions which make sense in

terms of an underlying genealogy connecting the haplotypes,

via manipulation of the prior. The first proposed Bayesian

algorithm, and still one of the best, is that implemented in the

‘PHASE’ program9 (http://www.stat.washington.edu/

stephens/phase.html). The proposed prior is derived,

approximately, from coalescent theory, and ensures that new

‘invented’ haplotypes look mutationally similar to the others at

any one stage of the iterative (Gibbs sampler) stochastic con-

vergence process. The main disadvantage of the original ver-

sion of ‘PHASE’ was its plodding speed of convergence for

datasets of any reasonable size.

Extensions

The key developments have been towards improving speed as

datasets increase in size, and coping with ever larger genomic

regions, where it becomes impossible to infer unbroken

haplotypes over the entire region because their estimated

frequencies become vanishingly small. For parsimony

algorithms, Gusfield shows how to implement a speeded up

version of Clarke’s algorithm.3 Eskin and colleagues also

illustrate the considerable speed advantages of this simple

algorithm in cases where a simple ‘block’-like structure of the

genome is observed10 (‘HAP’; http://www1.cs.columbia.edu/

compbio/hap/).

For Bayesian algorithms, one key idea that has since been

implemented in several new extensions is the Partition-

Ligation strategy proposed by Niu and colleagues.6 Here, the

genome region is split into a number of smaller regions (either

arbitrarily or by some process that attempts to maximise

linkage disequilibrium within each region). The haplotype

inference method is then applied separately to two adjacent

sub-regions and allowed to converge separately. Larger hap-

lotypes are then formed by allowing haplotypes to merge at

random across the boundary, using current estimates of their

respective frequencies. The haplotype inference method is

then applied to the new larger region (and allowed to

converge), and separately to another adjacent sub-region. The

process repeats until all sub-regions are merged. Niu and

colleagues also speeded up convergence steps by ‘prior

annealing’, in which jumps in posterior probability space are

allowed to be larger at first, then progressively smaller.

Stephens and Donnelly have implemented these ideas in a

new faster ‘PHASE’ program,11 and Niu and colleagues have

implemented them in a new Bayesian algorithm ‘HAPLO-

TYPER’6 (http://www.people.fas.harvard.edu/, junliu/

Haplo/docMain.htm). This latter algorithm abandons the idea

of a prior favouring mutational similarity among inferred

haplotypes, and instead applies a Dirichlet prior. This prior

functions in a similar way to the multinomial in EM algor-

ithms, in that it avoids making assumptions about mutational

and recombinatorial relationships among inferred haplotypes.

Lin and colleagues have also proposed a separate Bayesian

algorithm with a Dirichlet prior.12 The issue of what consti-

tutes a good prior for a Bayesian model remains unresolved.13

While the Dirichlet is computationally convenient, there is

valuable extra information in the mutational and recombina-

torial relationships that should lead to more accurate inferences

of haplotypes, provided that the models dealing with both

of these phenomena are reasonable. Eronen and colleagues

propose a new prior allowing for recombination, designed

explicitly for long-range genotype data14 (‘MC-VL’; http://

www.cs.helsinki.fi/group/genetics/haplotyping.html).

Another promising new algorithm that explicitly incorporates

recombination into its strategy and is also designed specifically

for long-range genotype data is the ‘ELB’ algorithm proposed

by Excoffier and colleagues.15 The latest version of ‘PHASE’

also optionally incorporates a recombination model.16

For EM algorithms, Qin and colleagues have implemented

the above partition-ligation ideas into an EM context17

(‘PL-EM’, http://www.people.fas.harvard.edu/, junliu/

plem/). A very similar algorithm has been proposed by Li and

colleagues18 (‘HPlus’; http://qge.fhcrc.org/hplus/). Zhang

and colleagues propose an improvement to the speed of the

E-step in the EM algorithm19 (‘OSLEM’; http://genome3.

cpmc.columbia.edu/cgi-bin/GENOME/oslem/doHaplo.cgi),

and Thomas proposes other approximations to increase EM

algorithm speed20 (‘GCHap’; http://episun7.med.utah.edu/

,alun/gchap/). David Clayton’s ‘snphap’ tackles the large data

set problem by starting with two-locus haplotypes, extending

the haplotype one locus at a time, and culling low-frequency

haplotypes at an early stage. The effect of these short cuts on

the optimality of the final solution is unclear.

A number of researchers have proposed EM algorithms

that take advantage of the increased (but not complete) cer-

tainty in haplotype phase afforded by simple pedigree data,

especially trios. These include Rohde and Fuerst21 (apply to

rohde@mdc-berlin.de for software), Li and Jiang22

(‘PedPhase’; http://www.cs.ucr.edu/, jili/haplotyping.html),

Dudbridge,23 and Weale and colleagues24 (‘EMtrio’, part of

the ‘TagIT’ package; http://popgen.biol.ucl.ac.uk/software.

html). ‘EMtrio’ is designed to cope with partially missing

genotype data, in which one homologous chromosome may

be phase-resolved and the other not. The Bayesian ‘PHASE’
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program also allows input of phase-resolved data, but does not

handle the above partially-missing situations. A front-end to

‘PHASE’, called ‘PHamily’, automatically resolves trio data

(H. Ackerman and M. Stephens; http://archimedes.well.ox.ac.

uk/pise/). Opinion is divided on whether it is worth the extra

genotyping effort to type close relatives to help resolve

phase.25–28 Interest has also focused recently on the use of EM

algorithms to infer haplotypes from pooled DNA data.29–31

Regardless of which method of haplotype inference is used,

it is generally recognised that any subsequent analyses using

such haplotypes (eg association tests against phenotype) should

ideally take account of the uncertainty associated with these

inferred haplotypes. There has also been a considerable

amount of recent literature on this subject, which is not

reviewed here. One promising program that allows for this is

‘BLADE’32,33 (Version 2: http://www.fas.harvard.edu/

, junliu/TechRept/03folder/bladev2.tgz).

Despite the assertions of some, it is currently not clear

which one of these alternative methods and their extensions

will provide the most reliable estimates. All the rival algori-

thms tend to do well when datasets and genomic regions are

small; all do badly when they are large. One prudent measure

is to check the results of different methods against each other

for consistency. The program ‘HIT’ brings together four well-

used algorithms for this purpose (including two EM algorithms,

‘PHASE’, and ‘HAPLOTYPER’; apply to wangx@udel.edu).

The ‘HapScope’ package34 (ftp://ftp1.nci.nih.gov/pub/Hap

Scope) incorporates versions of both ‘PHASE’ and ‘snphap’.

When consistency breaks down in the larger datasets, the way

forward is still unclear. The key issue will not be to find a

better haplotype inference method per se, but rather to find a

better strategy for partitioning large genomic regions into

manageable sub-regions without losing useful linkage dis-

equilibrium information along the way.
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